Application and Development of OER Catalysts in Water Electrolysis for Hydrogen

Authors

  • Baichuan Xi
  • Taiyuan Zhang

DOI:

https://doi.org/10.54691/en359c02

Keywords:

Water Splitting; OER; NiFe LDH.

Abstract

With the growing global energy crisis and environmental pollution, developing sustainable energy technologies is urgent. Hydrogen, a clean energy source with high energy density and water as its only byproduct, is a promising alternative to fossil fuels. Electrolytic water splitting is a green hydrogen production method, but its efficiency is limited by the slow kinetics of the oxygen evolution reaction (OER). Developing efficient OER catalysts is crucial to improving this process. This article reviews the principles of electrolytic water splitting, in-cluding HER and OER mechanisms, and key evaluation parameters such as overpotential, Tafel slope, EIS, ECSA, and stability. It highlights transition met-al-based catalysts, particularly NiFe LDH, which enhances OER performance through the lattice oxygen mechanism (LOM). Future research should focus on optimizing catalyst design to advance electrolytic water splitting technology.

Downloads

Download data is not yet available.

References

[1] C.-F. Schleussner, J. Rogelj, M. Schaeffer, T. Lissner, R. Licker, E.M. Fischer, R. Knutti, A. Levermann, K. Frieler, W. Hare, Science and policy characteristics of the Paris Agreement temperature goal, Nature Climate Change, 6 (2016) 827-835.

[2] T.F. Qahtan, I.O. Alade, M.S. Rahaman, T.A. Saleh, Mapping the research landscape of hydrogen production through electrocatalysis: A decade of progress and key trends, Renewable and Sustainable Energy Reviews, 184 (2023) 113490.

[3] Y. Wang, D. Yan, S. El Hankari, Y. Zou, S. Wang, Recent Progress on Layered Double Hydroxides and Their Derivatives for Electrocatalytic Water Splitting, Advanced Science, 5 (2018) 1800064.

[4] W. Zhang, M. Liu, X. Gu, Y. Shi, Z. Deng, N. Cai, Water Electrolysis toward Elevated Temperature: Advances, Challenges and Frontiers, Chem. Rev., 123 (2023) 7119-7192.

[5] L. Niu, R. Tian, W. Zhang, H. Wang, J. Wang, Y. Liu, Efficient Photoelectrocatalysis of Glycerol to Dihydroxyacetone and Synergistic Hydrogen Generation via Dual Oxidation Pathways Using Co-LDH/Bi2O3/TiO2 Ternary Array, ACS Catalysis, (2025) 2124-2138.

[6] B. Zhu, B. Dong, F. Wang, Q. Yang, Y. He, C. Zhang, P. Jin, L. Feng, Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides, Nat. Commun., 14 (2023) 1686.

[7] J. Liu, M. Zhang, Q. Tang, Y. Zhao, J. Zhang, Y. Zhu, Y. Liu, X. Hu, L. Li, Supra Hydrolytic Catalysis of Ni3Fe/rGO for Hydrogen Generation, Advanced Science, 9 (2022) 2201428.

[8] F. Dawood, M. Anda, G.M. Shafiullah, Hydrogen production for energy: An overview, Int. J. Hydrogen Energy, 45 (2020) 3847-3869.

[9] L. Yao, X. Wu, Z. Geng, Y. Zhang, Y. Fang, Q. Zhu, N. Liang, M. Cai, H. Sai, J. Cheng, S. Li, Y. Wang, M. Han, K. Huang, S. Feng, Oxygen Evolution Reaction of Amorphous/Crystalline Composites of NiFe(OH)x/NiFe2O4, ACS Nano, 19 (2025) 5851-5859.

[10] Y. Yuan, Y. Yang, G. Liu, M. Chang, Z. Liu, K. Gao, H. Zheng, M. Ye, J. Shen, “One Stone, Two Birds”: Multi-Element Doping Induced Crystallinity Modulation for Large Current Density Oxygen Evolution Reaction, Adv. Funct. Mater., n/a (2025) 2422889.

[11] J. Chen, H. Chen, T. Yu, R. Li, Y. Wang, Z. Shao, S. Song, Recent Advances in the Understanding of the Surface Reconstruction of Oxygen Evolution Electrocatalysts and Materials Development, Electrochemical Energy Reviews, 4 (2021) 566-600.

[12] B.M. Stratakes, J.L. Dempsey, A.J.M. Miller, Determining the Overpotential of Electrochemical Fuel Synthesis Mediated by Molecular Catalysts: Recommended Practices, Standard Reduction Potentials, and Challenges, ChemElectroChem, 8 (2021) 4161-4180.

[13] A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical methods: fundamentals and applications., Wiley, 1983.

[14] C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices, J. Am. Chem. Soc., 137 (2015) 4347-4357.

[15] P.M. Bodhankar, P.B. Sarawade, G. Singh, A. Vinu, D.S. Dhawale, Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting, J. Mater. Chem. A, 9 (2021) 3180-3208.

[16] J. Jiang, C. Xi, Y. Zhao, Y. Zhu, K. Hu, Y. Wang, S. Wang, Z. Zhang, S. Han, MXene-Based Hierarchical Electron Coupling Engineering of F-Doped NiFe LDH/MOF-74 Electrocatalysts for Efficient Overall Water Splitting, ACS Catalysis, (2025) 2561-2575.

[17] H. Yin, M. Huang, L. Wang, S. Muhammad, T.T. Isimjan, J. Guo, D. Cai, B. Wang, X. Yang, Lattice-mismatched MOF-on-MOF nanosheets with rich oxygen vacancies show fast oxygen evolution kinetics for large-current water splitting, Appl. Catal. B, 367 (2025) 125105.

[18] Y. Qin, T. Yu, S. Deng, X.-Y. Zhou, D. Lin, Q. Zhang, Z. Jin, D. Zhang, Y.-B. He, H.-J. Qiu, L. He, F. Kang, K. Li, T.-Y. Zhang, RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance, Nat. Commun., 13 (2022) 3784.

[19] C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction, J. Am. Chem. Soc., 135 (2013) 16977-16987.

[20] Z.-Y. Wu, F.-Y. Chen, B. Li, S.-W. Yu, Y.Z. Finfrock, D.M. Meira, Q.-Q. Yan, P. Zhu, M.-X. Chen, T.-W. Song, Z. Yin, H.-W. Liang, S. Zhang, G. Wang, H. Wang, Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis, Nat. Mater., 22 (2023) 100-108.

[21] Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction, Chem. Soc. Rev., 45 (2016) 1529-1541.

[22] D. Zhou, P. Li, X. Lin, A. McKinley, Y. Kuang, W. Liu, W.-F. Lin, X. Sun, X. Duan, Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly, Chem. Soc. Rev., 50 (2021) 8790-8817.

[23] Y. Huang, A.G.A. Mohamed, J. Xie, Y. Wang, Surface evolution of electrocatalysts in energy conversion reactions, Nano Energy, 82 (2021) 105745.

[24] X. Liu, J. Meng, K. Ni, R. Guo, F. Xia, J. Xie, X. Li, B. Wen, P. Wu, M. Li, J. Wu, X. Wu, L. Mai, D. Zhao, Complete Reconstruction of Hydrate Pre-Catalysts for Ultrastable Water Electrolysis in Industrial-Concentration Alkali Media, Cell Reports Physical Science, 1 (2020) 100241.

[25] N. Zhang, X. Feng, D. Rao, X. Deng, L. Cai, B. Qiu, R. Long, Y. Xiong, Y. Lu, Y. Chai, Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation, Nat. Commun., 11 (2020) 4066.

[26] K. Yin, Y. Chao, F. Lv, L. Tao, W. Zhang, S. Lu, M. Li, Q. Zhang, L. Gu, H. Li, S. Guo, One Nanometer PtIr Nanowires as High-Efficiency Bifunctional Catalysts for Electrosynthesis of Ethanol into High Value-Added Multicarbon Compound Coupled with Hydrogen Production, J. Am. Chem. Soc., 143 (2021) 10822-10827.

[27] J.Y.C. Chen, L. Dang, H. Liang, W. Bi, J.B. Gerken, S. Jin, E.E. Alp, S.S. Stahl, Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mössbauer Spectroscopy, J. Am. Chem. Soc., 137 (2015) 15090-15093.

[28] F. Dionigi, Z. Zeng, I. Sinev, T. Merzdorf, S. Deshpande, M.B. Lopez, S. Kunze, I. Zegkinoglou, H. Sarodnik, D. Fan, A. Bergmann, J. Drnec, J.F.d. Araujo, M. Gliech, D. Teschner, J. Zhu, W.-X. Li, J. Greeley, B.R. Cuenya, P. Strasser, In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution, Nat. Commun., 11 (2020) 2522.

[29] C. Wang, P. Zhai, M. Xia, Y. Wu, B. Zhang, Z. Li, L. Ran, J. Gao, X. Zhang, Z. Fan, L. Sun, J. Hou, Engineering Lattice Oxygen Activation of Iridium Clusters Stabilized on Amorphous Bimetal Borides Array for Oxygen Evolution Reaction, Angew. Chem. Int. Ed., 60 (2021) 27126-27134.

[30] X. Li, Y. Liu, Q. Sun, Z. Huangfu, W.-H. Huang, Z. Wang, C.-C. Chueh, C.-L. Chen, Z. Zhu, Effects of Cationic and Anionic Defects on NiFe LDH in Electrocatalytic Oxygen Evolution, ACS Sustainable Chemistry & Engineering, 10 (2022) 14474-14485.

[31] B.M. Hunter, W. Hieringer, J.R. Winkler, H.B. Gray, A.M. Müller, Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity, Energy Environ. Sci., 9 (2016) 1734-1743.

Downloads

Published

23-02-2025

Issue

Section

Articles

How to Cite

Xi, B., & Zhang, T. (2025). Application and Development of OER Catalysts in Water Electrolysis for Hydrogen. Frontiers in Sustainable Development, 5(2), 1-6. https://doi.org/10.54691/en359c02