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Abstract

Under the Paris Climate Accord, China has pledged to reduce carbon emissions by 2030
to help limit global temperature rise within 2°C. Using panel data for 2011-2019 and
system GMM estimation, this study examines the Environmental Kuznets Curve (EKC) in
the Chinese context and identifies both the direct and moderating effects of the digital
economy. The results show that (i) the digital economy exerts a direct mitigating effect
on carbon emissions, yet its interaction with GDP per capita is positive, indicating that
in more digitalized regions the marginal impact of economic growth on emissions is
stronger; and (ii) the relationship between GDP per capita and carbon emissions is U-
shaped, with most regions situated on the rising limb, which explains the overall
increase in emissions associated with GDP growth during the sample period. These
findings suggest that the inverted-U EKC is not universally applicable, and that
consumption upgrading and urbanization are key mechanisms driving emission
dynamics. Therefore, achieving the Sustainable Development Goals requires policies
tailored to development stages and regional heterogeneity. Aligning digital
transformation with green growth is essential to balance economic advancement,
evolving consumption, and environmental sustainability on China’s path to low-carbon
development.
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1. Introduction

China’s rapid economic growth has driven a sustained rise in GDP, yet resource constraints and
environmental pressures have increased in tandem, with carbon emissions remaining elevated
and broadly trending upward. For example, in 2019 the manufacturing sector consumed
approximately 2.586 billion tons of standard coal-about 55% of national terminal energy use-
and accounted for roughly 36% of energy-related CO, emissions. Figure 1 depicts the spatial
evolution of carbon emissions from 2000 to 2019: eastern coastal provinces and major
metropolitan areas exhibit higher emission levels and faster growth, underscoring pronounced
regional heterogeneity[1, 3]. As one of the world’s major contributors to global emissions, China
urgently needs to identify the mechanisms linking economic growth and carbon emissions in a
systematic manner to support the achievement of sustainable development goals[15, 22, 25].

Furthermore, the digital economy has rapidly expanded, providing new momentum for growth.
According to the China Academy of Information and Communications Technology, the digital
sector reached RMB 39.2 trillion in 2020-over one third of national GDP-and its contribution to
GDP rose from 27.0% in 2015 to 38.6% in 2019[27]. As digital technologies become
increasingly integrated with the real economy, the digital economy has emerged as a key driver
of growth model transformation and resource-allocation efficiency[6]. However, its
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implications for the relationship between economic development and carbon emissions remain
insufficiently articulated. Existing studies primarily emphasize the direct, emissions-mitigating
effects of digital tools via efficiency gains and energy transition, while evidence on the
interaction between digitalization and GDP per capita-and the associated heterogeneity across
industries and regions-remains mixed[5]. Moreover, the linkage between the digitalization
process and the Environmental Kuznets Curve (EKC) framework is not yet well established: in
the early stages of digitalization, asymmetries between infrastructure buildout and efficiency
improvements may lead to a temporary rise in emissions[8]. Consequently, it is necessary-in
the Chinese context-to disentangle the digital economy’s direct influence on emissions and its
moderating influence on the growth-emissions relationship.
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Figure 1. Spatial evolution of carbon emissions in China (2000-2019)

Using information drawn from 194 Chinese prefecture-level cities spanning 2011 to 2019, this
study employs the system GMM approach to analyze the dynamic relationships among carbon
emissions, GDP per capita, and the level of digital economic development, and derives policy
implications accordingly. It addresses three core questions: (1) How does economic expansion
affect carbon emission levels? (2) Does the digital economy moderate the relationship between
China’s economic development and carbon emissions, and through what mechanisms? (3) Do
nonlinearities-for example, a quadratic term for digitalization-alter the way in which economic
growth influences carbon emissions?

2. Literature Review

Since the 2010s, rapid global economic growth has been accompanied by mounting carbon
emission pressures, with per capita GDP regarded as a major driver of emission dynamics[7, 9].
At the same time, the rise of digital technologies such as electronics, the Internet of Things, and
artificial intelligence has positioned the digital economy as a critical factor influencing energy
efficiency and carbon emissions. Scholars have increasingly focused on the interaction between
these two dimensions, with particular attention to how economic growth contributes to rising
emissions and how the digital economy, through technological innovation and industrial
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upgrading, may either facilitate emission reductions or, under certain conditions, exacerbate
them.

2.1. Theoretical Framework and Hypotheses

China ranks among nations with both robust economic growth and elevated carbon emissions.
According to World Bank statistics, China’s CO, emissions reached 9809.2 million tons in 2019.
Zhu et al. [28] collected data from 2011 to 2019 in 278 cities in China, concluding that
digitalization significantly curbed carbon emissions overall and revealed a certain degree of
“decoupling” between economic growth and emissions. Similarly, Xiang et al. [26] emphasized
that digitalization plays a positive role by simultaneously promoting resource optimization and
innovation, though excessive GDP growth may lead to resource misallocation and weaken
environmental benefits.

A considerable body of literature also employs the Environmental Kuznets Curve (EKC)
framework to explain the nonlinear relationship between the economy and the environment.
The classical EKC posits an inverted U-shaped relationship: pollution intensifies in the early
stages of economic growth but declines once a high level of development is reached. However,
findings remain inconsistent[13, 14]. Some studies find a U-shaped relationship between GDP
and carbon emissions, in which middle-income countries exhibit lower emission levels,
whereas both highly developed and less developed regions show higher emissions [30].
Moreover, Jobert et al. [12] noted that the EKC lacks robustness in most countries, as its validity
largely depends on differences in energy efficiency and stages of development.

While the conventional Environmental Kuznets Curve (EKC) hypothesis predicts an inverted U-
shape, the empirical results in this paper indicate a U-shaped relationship. This suggests that in
China, emissions initially decline with rising incomes, reflecting early efficiency gains and
regulatory improvements, but subsequently increase as urbanisation and consumption
upgrading intensify demand for energy-intensive goods and services. Unlike the standard EKC
narrative, this pattern reflects structural characteristics of China’s growth trajectory, including
rapid urban expansion and lifestyle transitions. Clarifying this mechanism is essential, as it
highlights that the U-shaped curve is not an anomaly but a context-specific outcome of China’s
development path, differing from earlier inverted-U evidence.

2.2. Mechanisms of Impact
2.2.1. Industrial Structure Transformation

The digital economy promotes the transformation of industrial structures from resource-
intensive to technology-driven, thereby enabling, to some extent, the decoupling of economic
expansion from carbon emissions [16]. Industrial upgrading not only enhances energy
utilization but also improves resource allocation efficiency. However, in the early stages of
digital transformation, infrastructure development and rising energy demand may generate
short-term emission pressures. To address these complexities, Liu and Saraiva [18] proposed
a GMM-SAR framework suitable for handling heteroskedasticity and large-scale data, providing
methodological support for examining the relationship between industrial structure and
carbon emissions. Overall, scholars generally agree that the digital economy plays a positive
role in promoting industrial upgrading and low-carbon transition, while also acknowledging
the costs and risks associated with the initial stages of transformation.

2.2.2. Technology and Efficiency

The widespread application of digital tools such as big data and artificial intelligence has
improved resource allocation efficiency and facilitated the adoption of renewable energy [23].
As GDP rises, the marginal impact of per capita GDP on carbon emissions tends to decline.
However, some studies reveal a rebound effect: efficiency gains reduce costs but
simultaneously stimulate consumption, thereby offsetting part of the emission reduction
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benefits [24]. Moreover, policy contexts may alter the relationship between the digital economy
and emissions; for instance, anti-corruption policies have been found to strengthen the positive
impact of digitalization on carbon emissions. In contrast, evidence from Europe and Latin
America highlights that green investment and renewable energy promotion can both support
economic growth and reduce emissions [19, 20]. Taken together, these studies suggest that the
effects of technological progress vary across economies and policy environments, serving
either as a driver of emission reduction or as a source of new challenges.

2.3. Non-Linear Effects and Regional Disparities

Empirical analyses reveal non-linear impacts of the per capita GDP on emissions. The
magnitude in reducing carbon emissions varies across regions, depending on digital maturity
and local industrial characteristics. In urban centers, advanced economic development plus
digital adoption shows clear benefits, whereas in less-developed areas, challenges such as
infrastructure gaps and high upfront energy costs persist [17]. Furthermore, Zhu et al. [28] and
Xiang et al. [26, 31] likewise held China as an example, significant regional heterogeneity in
their research. Eastern and coastal regions with advanced digital infrastructure and higher
green energy efficiency benefit more from emission reductions than central or western regions.
Spillover effects are noted, where digital economy advancements in one region positively or
negatively influence neighboring regions.

2.4. Challenges and Gaps

The convergence across these studies underscores how per capita GDP impacts regarding
carbon emissions as well as the transformative potential presented by digital economic
development when promoting sustainability. However, realizing its full potential requires
addressing disparities in digital infrastructure, fostering innovation, and mitigating unintended
consequences like increased energy consumption and regional inequalities. Future policies
should therefore be tailored to local conditions, focusing on improving green energy efficiency,
promoting digital inclusiveness, and maximizing emission reduction through renewable energy
and differentiated strategies. While prior research has revealed a possible U-shaped
relationship between China’s per capita GDP and carbon emissions, a common bias persists in
assuming that GDP growth necessarily leads to higher emissions. To address this, the present
study incorporates multiple control variables to examine the nonlinear relationship between
GDP squared and carbon emissions, thereby providing evidence for formulating context-
specific sustainable development policies.

3. Hypothesis

Hypothesis 1: The higher GDP per capita will lead to a higher carbon emissions level in China.
Hypothesis 2: The most developed areas may have similarly high levels of carbon emissions as
less developed areas, while moderately developed areas tend to have lower levels of carbon
emissions. This could result in a U-shaped association linking GDP per person with carbon
emissions in China.

Hypothesis 3: The moderating role of the digital economy involves two competing mechanisms.
On one hand, digitalisation can weaken the growth-emissions link by enabling efficiency gains,
smarter energy use, and dematerialisation. On the other hand, it can strengthen the link by
stimulating consumption demand, expanding logistics, and increasing energy-intensive data
infrastructure. In China’s context, where digitalisation coincides with rapid consumption
upgrading and extensive urbanisation, the reinforcing mechanism is more likely to dominate.
Therefore, we hypothesise that digitalisation will amplify, rather than mitigate, the impact of
economic growth on emissions.
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4. Data and Methods
4.1.

The variables selected in this study cover economic development, digital economy, energy use,
industrial structure, and demographic characteristics. The balanced panel dataset consists of
1746 observations from 194 prefecture-level cities in China during 2011-2019. Table 1
provides detailed definitions and corresponding data sources. Descriptive statistics are

Data and Variable Description

available from the authors upon request.

Table 1. Variable definitions and data sources

Variable Variable Definition Source
type
Dependent Carbon Emissions Log of carbon China Carbon Accounting
(COzIncarbon) emissions at Database
prefecture-level cities
Independent GDP Per Capita (Igdp) Log of GDP per China Statistical Yearbook
capita
Moderating Digital economy level PCA-based Peking Univ. Digital Inclusive
(digital_1) composite index of Finance Index; China
digital economy Communications Industry
Statistical Yearbook
Control Energy Efficiency Log of energy China Energy Statistical
(Inee) consumption per unit Yearbook
of output
Energy Consumption Log of total energy China Energy Statistical
(Inec) consumption Yearbook
Technological Number of patent China Statistical Yearbook
Progress (tc) applications
Population Total population China Statistical Yearbook
(popu_new)
Regional Area (area) Size of China Administrative Division
administrative area Yearbook
Industrialized Level Log of enterprises National Bureau of Statistics
(ids) above designated size
Informatization (tele) Fixed telephone China Communications Industry
users per 100 people Statistical Yearbook
Foreign Capital FDI as a proportion China Statistical Yearbook;
Utilization (fdi) of GDP Ministry of Commerce
Environmental Green area as proxy China Urban Construction
Infrastructure Statistical Yearbook
Development (eic)
Industrial Structure Ratio of secondary China Statistical Yearbook
(inds) to tertiary sector
output
4.2. Model Setting

4.2.1. Linear Model

This study applies a dynamic panel model estimated using the Arellano-Bond generalized
method of moments (GMM) [2] to analyze the determinants of carbon emissions[10]. The
dependent variable is the logarithm of CO, emissions (CO.Incarbon), with the one-period lagged
term (L.CO;Incarbon), GDP per capita (lgdpp), and digital economy index (digital_1) as the core
explanatory variables, alongside the control variables discussed above. To address endogeneity,
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higher-order lags of carbon emissions serve as instruments. The error term excludes omitted
time- or individual-specific factors to ensure instrument validity. The model assumes weak
exogeneity of explanatory variables, no second-order autocorrelation, and valid moment
conditions, consistent with the Arellano-Bond framework. The specific model form is:

COzIncarbon;, = $,CO; Incarbon;_, + B In gdpp; + + B.digital,,, + p'Control; ¢ + u; (1)
4.2.2. Nonlinear Models

1) Quadratic Extension

Following Aiken and West [1] and the GMM estimation approach [2], we extend the linear
model by adding the squared term of GDP per capita to test for a potential U-shaped
relationship between GDP and carbon emissions, and to identify the turning point if confirmed.
Model 2 form is:

CO,Incarbon;; = B,CO,Incarbon; .y + B1In gdpp; + + F>(In gdppl-,t)2 +
Psdigital_l; . + p'Control; s + uy (2)

2) Moderating and Marginal Effects

According to the model of Cao et al. [4] and the GMM estimation [2], we introduce an interaction
term between GDP per capita and the digital economy to assess how digitalization moderates
the GDP-emissions nexus. The marginal effects of GDP at different levels of digitalization
(minimum, mean, and maximum) are calculated following Bahri et al. [3]. Model 3 form is:

COzIncarbon;, = B,COzIncarbon;_; + f1In gdpp;: + B.digital_l;, + p’'Control;, +
Bs(In gdpp; X digital L) + u; (3)
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Figure 2. Methodological framework of this study
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Figure 2 illustrates the methodological framework, outlining the process from data collection
to estimation and highlighting the linear, nonlinear, and moderating analyses.

5. Results and Discussion

5.1. The Linear Model
5.1.1. Descriptive Statistics and Diagnostic Tests

Firstly, the model is analyzed by descriptive data, and Table 2 below is obtained. Robustness
checks indicate no multicollinearity (VIF < 10) and no significant heteroskedasticity (White and
IM tests); detailed statistics appear in the Appendix.

Table 2. Descriptive Statistics

Variable Obs Mean Std. dev. Min Max
CO,lncarbon. 1,746 3.405 0.895 0.496 6.126
L1. 1,336 3.450 0.884 0.566 6.078
lgdp 1,746 10.791 0.571 8.842 13.056
digital 1 1,746 0.589 0.051 0.508 0.903
inds 1,746 1.296 0.623 0.193 8.802
area 1,746 9.328 0.792 7.015 12.474
ids 1,746 6.866 1.005 3.296 9.309
fdi 1,746 0.298 0.273 0 1.876
tele 1,746 16.957 7.744 1.045 67.508
eic 1,746 13.860 4.747 2.4 75.05
Inec 1,746 4.855 1.181 0.432 8.311
popu_new 1,746 49.043 34431 1.95 341.6
Intc 1,746 8.469 1.647 1.386 12.474

5.1.2. Estimation Results

Next, we run the model and get the following results:

Table 3. GMM Regression Results

Variable Coef. Std. Err. zZ P>|z|
L1. 0.365 0.328 1.12 0.265
lgdpp 0.729** 0.301 2.42 0.015
digital_1 -3.518 3.858 -0.91 0.362
inds 0.084 0.121 0.70 0.485
area 0.976*** 0.371 2.63 0.008
ids -0.071 0.320 -0.22 0.828
fdi -0.072 0.331 -0.22 0.828
tele -0.056 0.336 -0.17 0.868
eic -0.016 0.026 -0.61 0.539
Inec 0.026 0.024 1.02 0.307
popu_new -0.009 0.007 -1.39 0.164
Intc -0.228* 0.118 -1.93 0.054
cons -13.784*** 4.120 -3.35 0.001
AR(1) z =-3.00 (p = 0.003)
AR(2) 7 =2.95 (p = 0.003)
Sargan test x2(15) =27.83 (p = 0.023)
Difference-in-Sargan test x2(9) = 14.24 (p = 0.114); x*(6) = 13.59 (p = 0.035)
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Table 3 reports the dynamic panel estimation results using one-step system GMM. Per capita
GDP significantly raises emissions (coef. = 0.729, p < 0.05), highlighting the environmental cost
of growth. The digital economy is negative but insignificant (coef. = -3.518), indicating
unrealized mitigation potential. The Arellano-Bond test shows expected AR(1) correlation but
also significant AR(2) (p = 0.003), suggesting possible issues with instrument specification. The
Sargan test (p = 0.023) indicates potential overidentification, while the difference-in-Sargan
test (p = 0.114; p = 0.035) provides partial support for instrument exogeneity. Overall, the
model offers economic interpretability, though instrument number and selection may affect
robustness and require further refinement.

5.2. The Nonlinear Model

5.2.1. Result of Quadratic Extension

Model 2 introduces the quadratic term (lgdp_square) to capture a potential U-shaped linkage
between the explanatory and outcome variables. Pre-estimation diagnostics (White and IM
tests) suggest no major heteroscedasticity or skewness, with only mild kurtosis issues. Overall,
the error distribution is acceptable for estimation.

Table 4. GMM Regression Results

Variable Coef. Std. Err. Z P>|z|
L1. 0.962*** 0.005 183.81 0.000
lgdpp -1.394%** 0.192 -7.26 0.000
lgdpp_square 0.066*** 0.009 7.43 0.000
digital 1 -0.672%** 0.100 -6.72 0.000
inds -0.020%** 0.005 -3.88 0.000
area 0.032*** 0.006 5.75 0.000
ids -0.017** 0.008 -2.29 0.022
fdi -0.011 0.009 -1.17 0.190
tele -0.006 0.006 -0.97 0.331
eic -0.000 0.000 -0.90 0.369
Inec 0.022*** 0.005 5.02 0.000
popu_new -0.001 0.002 -0.73 0.455
Intc -0.012%** 0.003 -3.55 0.000
cons 7.553*** 1.078 7.01 0.000
AR(1) z=-4.84 Pr>z=0.000

AR(2) z=1.51 Pr>z=0.131

Sargan test chi2(164) =221.85 Prob > chi2 = 0.002

Hansen test chi2(164) =177.08 Prob > chi2 =0.230

Note: Difference-in-Hansen tests generally support instrument exogeneity.
*p < 0.1, *p < 0.05, ***p < 0.01.

The above Table 4 shows the results of the system GMM estimation model and related
diagnostic tests. The coefficient of GDP per capita becomes negative (f=-1.394, p<0.01), while
the quadratic term is positive (=0.066, p<0.01). This finding implies a U-shaped pattern:
carbon emissions first decrease as GDP per capita grows, but begin to climb again once a
threshold of economic development (GDP per capita = 43,914 yuan) is crossed. This result also
supports hypothesis 2. The level of digital economy consistently exhibits a negative correlation
with carbon emissions (=-0.672, p<0.01), strengthening its role in emission mitigation. In
terms of diagnostic tests, The Arellano-Bond tests confirm significant AR(1) but no AR(2) (p =
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0.131), satisfying system GMM requirements. The Sargan test (p = 0.002) suggests possible
overidentification, whereas the Hansen test (p = 0.230) supports instrument validity.
Difference-in-Hansen results largely confirm the exogeneity of lagged instruments. Overall, the
estimates are credible, though potential instrument proliferation may affect robustness. Model
findings are generally credible, but the excessive use of instrumental variables may bring
certain uncertainties to the interpretation of the results.

5.2.2. Results of Moderating and Marginal Effects

The Table 5 shows the dynamic panel estimation results and diagnostic tests based on the two-
stage system GMM estimation. The estimation results indicate that the interaction term
between GDP per capita and the digital economy is positive and highly significant (8 = 0.395, p
< 0.01), lending support to Hypothesis 3. This suggests that as digitalization advances, the
reinforcing effect of economic growth on carbon emissions becomes stronger. The marginal
effect analysis further confirms this pattern: the impact of GDP on emissions rises steadily
across different levels of digital economy development, from = 0.379 (p < 0.01) at the
minimum level, to § = 0.436 (p < 0.01) at the mean, and to § = 0.650 (p < 0.01) at the maximum.
These results imply that higher levels of digital economy, while potentially improving efficiency,
also intensify the emission-increasing effect of economic growth. The diagnostics indicate that
AR(1) is significant while AR(2) is not, supporting instrument validity. Hansen and difference-
Hansen tests confirm instrument exogeneity, though the Sargan test suggests potential over-
identification. Overall, the estimates are credible, but caution is warranted regarding
instrument proliferation.

Table 5. GMM Regression Results

Variable Coef. Std. Err. Z P>|z|
L1. 0.968*** 0.005 188.98 0.000
lgdpp 0.040*** 0.009 4.02 0.000
digital 1 -0.783*** 0.136 -5.75 0.000
d_lgdppdig -0.395%** 0.092 -4.31 0.000
inds -0.014**+* 0.005 -2.81 0.005
area 0.036%** 0.006 6.50 0.000
ids -0.0271%*+* 0.005 -3.89 0.000
fdi -0.012 0.008 -1.57 0.117
tele -0.006 0.006 -0.96 0.337
eic -0.000 0.000 -0.93 0.351
Inec 0.016*** 0.005 3.37 0.001
popu_new 0.000 0.002 0.21 0.833
Intc 0.01 5%** 0.004 3.84 0.000
cons -0.196* 0.116 -1.69 0.092
AR(1) z= -4.84 Pr>z=0.000

AR(2) z= 154 Pr>z=0.124

Sargan test chi2(164) = 223.61 Prob > chi2 =0.001

Hansen test chi2(164) = 183.08 Prob > chi2 = 0.146

Diff-Hansen largely confirms instrument exogeneity

6. Conclusion and Policy Implications

As China's economy has grown rapidly, its global GDP status has strengthened. Yet, escalating
resource consumption and environmental issues-especially the surge in carbon emissions-have
become global concerns. On this basis, this article applies panel data from 194 Chinese

128



Frontiers in Sustainable Development Volume 5 Issue 10, 2025
ISSN: 2710-0723

prefecture-level cities (2011-2019), constructing a GMM framework to empirically examine
how GDP per capita, the digital economy, and carbon emissions interact over time, and draws
the following conclusions: The analysis confirms a U-shaped relationship between GDP per
capita and carbon emissions, consistent with China’s dual-stage development trajectory: initial
efficiency gains reduce emissions, but subsequent urbanisation and consumption upgrading
drive them upward. While consumption and urbanisation variables were not directly modelled
here, they provide a theoretically grounded explanation for the observed U-shape and should
be incorporated in future research. These complexities may stem from consumption upgrades
and urbanization, which increase the demand for energy-intensive products and services, while
urbanization further amplifies energy use intensity and carbon emissions [8]. Especially in the
middle and high income stage, the impact of the change of residents' lifestyle on the
environment cannot be ignored. In addition, the degree of the digital economy's moderating
effect has strengthened: where digitalization is more advanced, economic growth exerts a
greater influence on emissions. Therefore, future digital transformation must align more
closely with environmental priorities via supportive policies and technological advances.
Future studies can further explore the influence of other potential variables (such as cultural
factors, international trade) regarding how economic expansion influences environmental
outcomes.

6.1. Optimize Urbanization Process and Promote Green City Planning

The technology upgrading and rationalization brought about by the stage of urbanization can
improve more efficient use of resources; however, as urbanization intensifies, energy costs tend
to rise [21]. Accordingly, advocating for compact city development in urban growth is essential,
reduce resource waste through efficient land use, prioritize the construction of green buildings,
and implement renewable energy supply systems such as solar and geothermal heating.
Meanwhile, it is necessary to optimize the urban public transport system, and to expand the
coverage of subways and electric buses, and bike-sharing and pedestrian-friendly urban design
should be promoted to reduce the use of private cars.

6.2. Promote Green Consumption Patterns and Enhance Citizen's
Environmental Consciousness

Due to the large amount of carbon emissions from urbanization, this is considered to be a major
factor leading to serious climate change problems. In order to solve this problem, various low-
carbon green development plans have been launched at the global city level [11]. Promote the
upgrading of green consumption patterns by imposing taxes on energy-intensive goods such as
luxury goods or disposable products to curb demand for products with high carbon emissions
and promote shifting consumer patterns toward low-carbon lifestyles. At the same time,
energy-saving and environmentally friendly products, such as eco-friendly vehicles and energy-
efficient appliances can be incentivized through subsidies or tax breaks to motivate the
adoption of low-carbon products. Additionally, strengthening green certification and labeling
systems can assist consumers in identifying sustainable products more effectively.

6.3. Support the Transformation of Industrial Structure and Promote the
Development of Low-carbon Industries

Because of the large area of China, the industrial structure and technology are very different
from each other. It is important to explore the long-term structural drivers to achieve carbon
reduction. According to Roberts and Grimes [32], economic development level is the major
determining factor of carbon emissions. If so, it is expected that the continuous transformation
of Chinese industrial structure will be a structural factor influencing carbon emissions [29]. In
the context of consumption upgrading, we will use the economies of scale brought by
urbanization to promote development of services and the digital economy should be advanced,
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supporting broader digital technology use in sectors such as retail and logistics, thereby
boosting resource use efficiency. At the same time, we will encourage traditional high-polluting
encourage high-polluting industries to upgrade into cleaner, value-added sectors, and to step
up support to R&D and use of clean energy, energy saving and energy efficient materials.
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