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Abstract 
Under the Paris Climate Accord, China has pledged to reduce carbon emissions by 2030 
to help limit global temperature rise within 2°C. Using panel data for 2011–2019 and 
system GMM estimation, this study examines the Environmental Kuznets Curve (EKC) in 
the Chinese context and identifies both the direct and moderating effects of the digital 
economy. The results show that (i) the digital economy exerts a direct mitigating effect 
on carbon emissions, yet its interaction with GDP per capita is positive, indicating that 
in more digitalized regions the marginal impact of economic growth on emissions is 
stronger; and (ii) the relationship between GDP per capita and carbon emissions is U-
shaped, with most regions situated on the rising limb, which explains the overall 
increase in emissions associated with GDP growth during the sample period. These 
findings suggest that the inverted-U EKC is not universally applicable, and that 
consumption upgrading and urbanization are key mechanisms driving emission 
dynamics. Therefore, achieving the Sustainable Development Goals requires policies 
tailored to development stages and regional heterogeneity. Aligning digital 
transformation with green growth is essential to balance economic advancement, 
evolving consumption, and environmental sustainability on China’s path to low-carbon 
development. 
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1. Introduction 

China’s rapid economic growth has driven a sustained rise in GDP, yet resource constraints and 
environmental pressures have increased in tandem, with carbon emissions remaining elevated 
and broadly trending upward. For example, in 2019 the manufacturing sector consumed 
approximately 2.586 billion tons of standard coal-about 55% of national terminal energy use-
and accounted for roughly 36% of energy-related CO₂ emissions. Figure 1 depicts the spatial 
evolution of carbon emissions from 2000 to 2019: eastern coastal provinces and major 
metropolitan areas exhibit higher emission levels and faster growth, underscoring pronounced 
regional heterogeneity[1, 3]. As one of the world’s major contributors to global emissions, China 
urgently needs to identify the mechanisms linking economic growth and carbon emissions in a 
systematic manner to support the achievement of sustainable development goals[15, 22, 25]. 
Furthermore, the digital economy has rapidly expanded, providing new momentum for growth. 
According to the China Academy of Information and Communications Technology, the digital 
sector reached RMB 39.2 trillion in 2020-over one third of national GDP-and its contribution to 
GDP rose from 27.0% in 2015 to 38.6% in 2019[27]. As digital technologies become 
increasingly integrated with the real economy, the digital economy has emerged as a key driver 
of growth model transformation and resource-allocation efficiency[6]. However, its 
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implications for the relationship between economic development and carbon emissions remain 
insufficiently articulated. Existing studies primarily emphasize the direct, emissions-mitigating 
effects of digital tools via efficiency gains and energy transition, while evidence on the 
interaction between digitalization and GDP per capita-and the associated heterogeneity across 
industries and regions-remains mixed[5]. Moreover, the linkage between the digitalization 
process and the Environmental Kuznets Curve (EKC) framework is not yet well established: in 
the early stages of digitalization, asymmetries between infrastructure buildout and efficiency 
improvements may lead to a temporary rise in emissions[8]. Consequently, it is necessary-in 
the Chinese context-to disentangle the digital economy’s direct influence on emissions and its 
moderating influence on the growth-emissions relationship. 

 

 
Figure 1. Spatial evolution of carbon emissions in China (2000–2019) 

 
Using information drawn from 194 Chinese prefecture-level cities spanning 2011 to 2019, this 
study employs the system GMM approach to analyze the dynamic relationships among carbon 
emissions, GDP per capita, and the level of digital economic development, and derives policy 
implications accordingly. It addresses three core questions: (1) How does economic expansion 
affect carbon emission levels? (2) Does the digital economy moderate the relationship between 
China’s economic development and carbon emissions, and through what mechanisms? (3) Do 
nonlinearities-for example, a quadratic term for digitalization-alter the way in which economic 
growth influences carbon emissions? 

2. Literature Review 

Since the 2010s, rapid global economic growth has been accompanied by mounting carbon 
emission pressures, with per capita GDP regarded as a major driver of emission dynamics[7, 9]. 
At the same time, the rise of digital technologies such as electronics, the Internet of Things, and 
artificial intelligence has positioned the digital economy as a critical factor influencing energy 
efficiency and carbon emissions. Scholars have increasingly focused on the interaction between 
these two dimensions, with particular attention to how economic growth contributes to rising 
emissions and how the digital economy, through technological innovation and industrial 
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upgrading, may either facilitate emission reductions or, under certain conditions, exacerbate 
them. 

2.1. Theoretical Framework and Hypotheses 
China ranks among nations with both robust economic growth and elevated carbon emissions. 
According to World Bank statistics, China’s CO₂ emissions reached 9809.2 million tons in 2019. 
Zhu et al. [28] collected data from 2011 to 2019 in 278 cities in China, concluding that 
digitalization significantly curbed carbon emissions overall and revealed a certain degree of 
“decoupling” between economic growth and emissions. Similarly, Xiang et al. [26] emphasized 
that digitalization plays a positive role by simultaneously promoting resource optimization and 
innovation, though excessive GDP growth may lead to resource misallocation and weaken 
environmental benefits. 
A considerable body of literature also employs the Environmental Kuznets Curve (EKC) 
framework to explain the nonlinear relationship between the economy and the environment. 
The classical EKC posits an inverted U-shaped relationship: pollution intensifies in the early 
stages of economic growth but declines once a high level of development is reached. However, 
findings remain inconsistent[13, 14]. Some studies find a U-shaped relationship between GDP 
and carbon emissions, in which middle-income countries exhibit lower emission levels, 
whereas both highly developed and less developed regions show higher emissions [30]. 
Moreover, Jobert et al. [12] noted that the EKC lacks robustness in most countries, as its validity 
largely depends on differences in energy efficiency and stages of development. 
While the conventional Environmental Kuznets Curve (EKC) hypothesis predicts an inverted U-
shape, the empirical results in this paper indicate a U-shaped relationship. This suggests that in 
China, emissions initially decline with rising incomes, reflecting early efficiency gains and 
regulatory improvements, but subsequently increase as urbanisation and consumption 
upgrading intensify demand for energy-intensive goods and services. Unlike the standard EKC 
narrative, this pattern reflects structural characteristics of China’s growth trajectory, including 
rapid urban expansion and lifestyle transitions. Clarifying this mechanism is essential, as it 
highlights that the U-shaped curve is not an anomaly but a context-specific outcome of China’s 
development path, differing from earlier inverted-U evidence. 

2.2. Mechanisms of Impact 
2.2.1. Industrial Structure Transformation 
The digital economy promotes the transformation of industrial structures from resource-
intensive to technology-driven, thereby enabling, to some extent, the decoupling of economic 
expansion from carbon emissions [16]. Industrial upgrading not only enhances energy 
utilization but also improves resource allocation efficiency. However, in the early stages of 
digital transformation, infrastructure development and rising energy demand may generate 
short-term emission pressures. To address these complexities, Liu and Saraiva [18] proposed 
a GMM-SAR framework suitable for handling heteroskedasticity and large-scale data, providing 
methodological support for examining the relationship between industrial structure and 
carbon emissions. Overall, scholars generally agree that the digital economy plays a positive 
role in promoting industrial upgrading and low-carbon transition, while also acknowledging 
the costs and risks associated with the initial stages of transformation. 
2.2.2. Technology and Efficiency 
The widespread application of digital tools such as big data and artificial intelligence has 
improved resource allocation efficiency and facilitated the adoption of renewable energy [23]. 
As GDP rises, the marginal impact of per capita GDP on carbon emissions tends to decline. 
However, some studies reveal a rebound effect: efficiency gains reduce costs but 
simultaneously stimulate consumption, thereby offsetting part of the emission reduction 
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benefits [24]. Moreover, policy contexts may alter the relationship between the digital economy 
and emissions; for instance, anti-corruption policies have been found to strengthen the positive 
impact of digitalization on carbon emissions. In contrast, evidence from Europe and Latin 
America highlights that green investment and renewable energy promotion can both support 
economic growth and reduce emissions [19, 20]. Taken together, these studies suggest that the 
effects of technological progress vary across economies and policy environments, serving 
either as a driver of emission reduction or as a source of new challenges. 

2.3. Non-Linear Effects and Regional Disparities 
Empirical analyses reveal non-linear impacts of the per capita GDP on emissions. The 
magnitude in reducing carbon emissions varies across regions, depending on digital maturity 
and local industrial characteristics. In urban centers, advanced economic development plus 
digital adoption shows clear benefits, whereas in less-developed areas, challenges such as 
infrastructure gaps and high upfront energy costs persist [17]. Furthermore, Zhu et al. [28] and 
Xiang et al. [26, 31] likewise held China as an example, significant regional heterogeneity in 
their research. Eastern and coastal regions with advanced digital infrastructure and higher 
green energy efficiency benefit more from emission reductions than central or western regions. 
Spillover effects are noted, where digital economy advancements in one region positively or 
negatively influence neighboring regions. 

2.4. Challenges and Gaps 
The convergence across these studies underscores how per capita GDP impacts regarding 
carbon emissions as well as the transformative potential presented by digital economic 
development when promoting sustainability. However, realizing its full potential requires 
addressing disparities in digital infrastructure, fostering innovation, and mitigating unintended 
consequences like increased energy consumption and regional inequalities. Future policies 
should therefore be tailored to local conditions, focusing on improving green energy efficiency, 
promoting digital inclusiveness, and maximizing emission reduction through renewable energy 
and differentiated strategies. While prior research has revealed a possible U-shaped 
relationship between China’s per capita GDP and carbon emissions, a common bias persists in 
assuming that GDP growth necessarily leads to higher emissions. To address this, the present 
study incorporates multiple control variables to examine the nonlinear relationship between 
GDP squared and carbon emissions, thereby providing evidence for formulating context-
specific sustainable development policies. 

3. Hypothesis 

Hypothesis 1: The higher GDP per capita will lead to a higher carbon emissions level in China. 
Hypothesis 2: The most developed areas may have similarly high levels of carbon emissions as 
less developed areas, while moderately developed areas tend to have lower levels of carbon 
emissions. This could result in a U-shaped association linking GDP per person with carbon 
emissions in China. 
Hypothesis 3: The moderating role of the digital economy involves two competing mechanisms. 
On one hand, digitalisation can weaken the growth–emissions link by enabling efficiency gains, 
smarter energy use, and dematerialisation. On the other hand, it can strengthen the link by 
stimulating consumption demand, expanding logistics, and increasing energy-intensive data 
infrastructure. In China’s context, where digitalisation coincides with rapid consumption 
upgrading and extensive urbanisation, the reinforcing mechanism is more likely to dominate. 
Therefore, we hypothesise that digitalisation will amplify, rather than mitigate, the impact of 
economic growth on emissions. 
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4. Data and Methods 

4.1. Data and Variable Description 
The variables selected in this study cover economic development, digital economy, energy use, 
industrial structure, and demographic characteristics. The balanced panel dataset consists of 
1746 observations from 194 prefecture-level cities in China during 2011–2019. Table 1 
provides detailed definitions and corresponding data sources. Descriptive statistics are 
available from the authors upon request. 
 

Table 1. Variable definitions and data sources 
Variable 
type 

Variable Definition Source 

Dependent Carbon Emissions 
(CO₂lncarbon) 

Log of carbon 
emissions at 

prefecture-level cities 

China Carbon Accounting 
Database 

Independent GDP Per Capita (lgdp) Log of GDP per 
capita 

China Statistical Yearbook 

Moderating Digital economy level 
(digital_1) 

PCA-based 
composite index of 

digital economy 

Peking Univ. Digital Inclusive 
Finance Index; China 

Communications Industry 
Statistical Yearbook 

Control Energy Efficiency 
(lnee) 

Log of energy 
consumption per unit 

of output 

China Energy Statistical 
Yearbook 

Energy Consumption 
(lnec) 

Log of total energy 
consumption 

China Energy Statistical 
Yearbook 

Technological 
Progress (tc) 

Number of patent 
applications 

China Statistical Yearbook 

Population 
(popu_new) 

Total population China Statistical Yearbook 

Regional Area (area) Size of 
administrative area 

China Administrative Division 
Yearbook 

Industrialized Level 
(ids) 

Log of enterprises 
above designated size 

National Bureau of Statistics 

Informatization (tele) Fixed telephone 
users per 100 people 

China Communications Industry 
Statistical Yearbook 

Foreign Capital 
Utilization (fdi) 

FDI as a proportion 
of GDP 

China Statistical Yearbook; 
Ministry of Commerce 

Environmental 
Infrastructure 

Development (eic) 

Green area as proxy China Urban Construction 
Statistical Yearbook 

Industrial Structure 
(inds) 

Ratio of secondary 
to tertiary sector 

output 

China Statistical Yearbook 

4.2. Model Setting 
4.2.1. Linear Model 
This study applies a dynamic panel model estimated using the Arellano-Bond generalized 
method of moments (GMM) [2] to analyze the determinants of carbon emissions[10]. The 
dependent variable is the logarithm of CO₂ emissions (CO₂lncarbon), with the one-period lagged 
term (l.CO₂lncarbon), GDP per capita (lgdpp), and digital economy index (digital_1) as the core 
explanatory variables, alongside the control variables discussed above. To address endogeneity, 
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higher-order lags of carbon emissions serve as instruments. The error term excludes omitted 
time- or individual-specific factors to ensure instrument validity. The model assumes weak 
exogeneity of explanatory variables, no second-order autocorrelation, and valid moment 
conditions, consistent with the Arellano-Bond framework. The specific model form is: 
 
𝐶𝑂ଶ ln 𝑐𝑎𝑟𝑏𝑜𝑛௜,௧ = 𝛽଴𝐶𝑂ଶ ln 𝑐𝑎𝑟𝑏𝑜𝑛௜,௧ିଵ + 𝛽ଵ ln 𝑔𝑑𝑝𝑝௜,௧ + 𝛽ଶ𝑑𝑖𝑔𝑖𝑡𝑎𝑙௟೔,೟

+ 𝛽ᇱ𝐶𝑜𝑛𝑡𝑟𝑜𝑙௜,௧ + 𝑢௜௧ (1)  

4.2.2. Nonlinear Models 
1) Quadratic Extension 
Following Aiken and West [1] and the GMM estimation approach [2], we extend the linear 
model by adding the squared term of GDP per capita to test for a potential U-shaped 
relationship between GDP and carbon emissions, and to identify the turning point if confirmed. 
Model 2 form is: 
 

𝐶𝑂ଶln 𝑐𝑎𝑟𝑏𝑜𝑛௜,௧ = 𝛽଴𝐶𝑂ଶln 𝑐𝑎𝑟𝑏𝑜𝑛௜,௧ିଵ + 𝛽ଵln 𝑔𝑑𝑝𝑝௜,௧ + 𝛽ଶ(ln 𝑔𝑑𝑝𝑝௜,௧)ଶ + 
𝛽ଷ𝑑𝑖𝑔𝑖𝑡𝑎𝑙_𝑙௜,௧ + 𝛽ᇱ𝐶𝑜𝑛𝑡𝑟𝑜𝑙௜,௧ + 𝑢௜௧                                                        (2)  

 
2) Moderating and Marginal Effects 
According to the model of Cao et al. [4] and the GMM estimation [2], we introduce an interaction 
term between GDP per capita and the digital economy to assess how digitalization moderates 
the GDP–emissions nexus. The marginal effects of GDP at different levels of digitalization 
(minimum, mean, and maximum) are calculated following Bahri et al. [3]. Model 3 form is: 
 

𝐶𝑂ଶln 𝑐𝑎𝑟𝑏𝑜𝑛௜,௧ = 𝛽଴𝐶𝑂ଶln 𝑐𝑎𝑟𝑏𝑜𝑛௜,௧ିଵ + 𝛽ଵln 𝑔𝑑𝑝𝑝௜,௧ + 𝛽ଶ𝑑𝑖𝑔𝑖𝑡𝑎𝑙_𝑙௜,௧ + 𝛽ᇱ𝐶𝑜𝑛𝑡𝑟𝑜𝑙௜,௧ +

𝛽ଷ(ln 𝑔𝑑𝑝𝑝௜,௧ × 𝑑𝑖𝑔𝑖𝑡𝑎𝑙_𝑙௜,௧) + 𝑢௜௧                                                           (3)  
 

 
Figure 2. Methodological framework of this study 
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Figure 2 illustrates the methodological framework, outlining the process from data collection 
to estimation and highlighting the linear, nonlinear, and moderating analyses. 

5. Results and Discussion 

5.1. The Linear Model 
5.1.1. Descriptive Statistics and Diagnostic Tests 
Firstly, the model is analyzed by descriptive data, and Table 2 below is obtained. Robustness 
checks indicate no multicollinearity (VIF < 10) and no significant heteroskedasticity (White and 
IM tests); detailed statistics appear in the Appendix. 
 

Table 2. Descriptive Statistics 
Variable Obs Mean Std. dev. Min Max 
CO₂lncarbon. 1,746 3.405 0.895 0.496 6.126 
L1. 1,336 3.450 0.884 0.566 6.078 
lgdp 1,746 10.791 0.571 8.842 13.056 
digital_1 1,746 0.589 0.051 0.508 0.903 
inds 1,746 1.296 0.623 0.193 8.802 
area 1,746 9.328 0.792 7.015 12.474 
ids 1,746 6.866 1.005 3.296 9.309 
fdi 1,746 0.298 0.273 0 1.876 
tele 1,746 16.957 7.744 1.045 67.508 
eic 1,746 13.860 4.747 2.4 75.05 
lnec 1,746 4.855 1.181 0.432 8.311 
popu_new 1,746 49.043 34.431 1.95 341.6 
lntc 1,746 8.469 1.647 1.386 12.474 

5.1.2. Estimation Results 
Next, we run the model and get the following results: 

 
Table 3. GMM Regression Results 

Variable Coef. Std. Err. z P>|z| 
L1. 0.365 0.328 1.12 0.265 
lgdpp 0.729** 0.301 2.42 0.015 
digital_1 -3.518 3.858 -0.91 0.362 
inds 0.084 0.121 0.70 0.485 
area 0.976*** 0.371 2.63 0.008 
ids -0.071 0.320 -0.22 0.828 
fdi -0.072 0.331 -0.22 0.828 
tele -0.056 0.336 -0.17 0.868 
eic -0.016 0.026 -0.61 0.539 
lnec 0.026 0.024 1.02 0.307 
popu_new -0.009 0.007 -1.39 0.164 
lntc -0.228* 0.118 -1.93 0.054 
cons -13.784*** 4.120 -3.35 0.001 
AR(1) z = -3.00 (p = 0.003) 
AR(2) z = 2.95 (p = 0.003) 
Sargan test χ²(15) = 27.83 (p = 0.023) 
Difference-in-Sargan test χ²(9) = 14.24 (p = 0.114); χ²(6) = 13.59 (p = 0.035) 
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Table 3 reports the dynamic panel estimation results using one-step system GMM. Per capita 
GDP significantly raises emissions (coef. = 0.729, p < 0.05), highlighting the environmental cost 
of growth. The digital economy is negative but insignificant (coef. = –3.518), indicating 
unrealized mitigation potential. The Arellano–Bond test shows expected AR(1) correlation but 
also significant AR(2) (p = 0.003), suggesting possible issues with instrument specification. The 
Sargan test (p = 0.023) indicates potential overidentification, while the difference-in-Sargan 
test (p = 0.114; p = 0.035) provides partial support for instrument exogeneity. Overall, the 
model offers economic interpretability, though instrument number and selection may affect 
robustness and require further refinement. 

5.2. The Nonlinear Model 
5.2.1. Result of Quadratic Extension 
Model 2 introduces the quadratic term (lgdp_square) to capture a potential U-shaped linkage 
between the explanatory and outcome variables. Pre-estimation diagnostics (White and IM 
tests) suggest no major heteroscedasticity or skewness, with only mild kurtosis issues. Overall, 
the error distribution is acceptable for estimation. 
 

Table 4. GMM Regression Results 
Variable Coef. Std. Err. z P>|z| 
L1. 0.962*** 0.005 183.81 0.000 
lgdpp -1.394*** 0.192 -7.26 0.000 
lgdpp_square 0.066*** 0.009 7.43 0.000 
digital_1 -0.672*** 0.100 -6.72 0.000 
inds -0.020*** 0.005 -3.88 0.000 
area 0.032*** 0.006 5.75 0.000 
ids -0.017** 0.008 -2.29 0.022 
fdi -0.011 0.009 -1.17 0.190 
tele -0.006 0.006 -0.97 0.331 
eic -0.000 0.000 -0.90 0.369 
lnec 0.022*** 0.005 5.02 0.000 
popu_new -0.001 0.002 -0.73 0.455 
lntc -0.012*** 0.003 -3.55 0.000 
cons 7.553*** 1.078 7.01 0.000 
AR(1) z = -4.84   Pr > z = 0.000 
AR(2) z = 1.51   Pr > z = 0.131 
Sargan test chi2(164) = 221.85   Prob > chi2 = 0.002 
Hansen test  chi2(164) = 177.08   Prob > chi2 = 0.230 

Note: Difference-in-Hansen tests generally support instrument exogeneity. 
*p < 0.1, **p < 0.05, ***p < 0.01. 
 
The above Table 4 shows the results of the system GMM estimation model and related 
diagnostic tests. The coefficient of GDP per capita becomes negative (β=−1.394, p<0.01), while 
the quadratic term is positive (β=0.066, p<0.01). This finding implies a U-shaped pattern: 
carbon emissions first decrease as GDP per capita grows, but begin to climb again once a 
threshold of economic development (GDP per capita = 43,914 yuan) is crossed. This result also 
supports hypothesis 2. The level of digital economy consistently exhibits a negative correlation 
with carbon emissions (β=−0.672, p<0.01), strengthening its role in emission mitigation. In 
terms of diagnostic tests, The Arellano–Bond tests confirm significant AR(1) but no AR(2) (p = 
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0.131), satisfying system GMM requirements. The Sargan test (p = 0.002) suggests possible 
overidentification, whereas the Hansen test (p = 0.230) supports instrument validity. 
Difference-in-Hansen results largely confirm the exogeneity of lagged instruments. Overall, the 
estimates are credible, though potential instrument proliferation may affect robustness. Model 
findings are generally credible, but the excessive use of instrumental variables may bring 
certain uncertainties to the interpretation of the results. 
5.2.2. Results of Moderating and Marginal Effects 
The Table 5 shows the dynamic panel estimation results and diagnostic tests based on the two-
stage system GMM estimation. The estimation results indicate that the interaction term 
between GDP per capita and the digital economy is positive and highly significant (β = 0.395, p 
< 0.01), lending support to Hypothesis 3. This suggests that as digitalization advances, the 
reinforcing effect of economic growth on carbon emissions becomes stronger. The marginal 
effect analysis further confirms this pattern: the impact of GDP on emissions rises steadily 
across different levels of digital economy development, from β = 0.379 (p < 0.01) at the 
minimum level, to β = 0.436 (p < 0.01) at the mean, and to β = 0.650 (p < 0.01) at the maximum. 
These results imply that higher levels of digital economy, while potentially improving efficiency, 
also intensify the emission-increasing effect of economic growth. The diagnostics indicate that 
AR(1) is significant while AR(2) is not, supporting instrument validity. Hansen and difference-
Hansen tests confirm instrument exogeneity, though the Sargan test suggests potential over-
identification. Overall, the estimates are credible, but caution is warranted regarding 
instrument proliferation. 

 
Table 5. GMM Regression Results 

Variable Coef. Std. Err. z P>|z| 
L1. 0.968*** 0.005 188.98 0.000 
lgdpp 0.040*** 0.009 4.02 0.000 
digital_1 -0.783*** 0.136 -5.75 0.000 
d_lgdppdig -0.395*** 0.092 -4.31 0.000 
inds -0.014*** 0.005 -2.81 0.005 
area 0.036*** 0.006 6.50 0.000 
ids -0.021*** 0.005 -3.89 0.000 
fdi -0.012 0.008 -1.57 0.117 
tele -0.006 0.006 -0.96 0.337 
eic -0.000 0.000 -0.93 0.351 
lnec 0.016*** 0.005 3.37 0.001 
popu_new 0.000 0.002 0.21 0.833 
lntc 0.015*** 0.004 3.84 0.000 
cons -0.196* 0.116 -1.69 0.092 
AR(1) z =  -4.84   Pr > z = 0.000 
AR(2) z =  1.54   Pr > z = 0.124 
Sargan test  chi2(164) = 223.61   Prob > chi2 = 0.001 
Hansen test chi2(164) = 183.08   Prob > chi2 = 0.146 
Diff-Hansen largely confirms instrument exogeneity 

6. Conclusion and Policy Implications 

As China's economy has grown rapidly, its global GDP status has strengthened. Yet, escalating 
resource consumption and environmental issues-especially the surge in carbon emissions-have 
become global concerns. On this basis, this article applies panel data from 194 Chinese 
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prefecture-level cities (2011–2019), constructing a GMM framework to empirically examine 
how GDP per capita, the digital economy, and carbon emissions interact over time, and draws 
the following conclusions: The analysis confirms a U-shaped relationship between GDP per 
capita and carbon emissions, consistent with China’s dual-stage development trajectory: initial 
efficiency gains reduce emissions, but subsequent urbanisation and consumption upgrading 
drive them upward. While consumption and urbanisation variables were not directly modelled 
here, they provide a theoretically grounded explanation for the observed U-shape and should 
be incorporated in future research. These complexities may stem from consumption upgrades 
and urbanization, which increase the demand for energy-intensive products and services, while 
urbanization further amplifies energy use intensity and carbon emissions [8]. Especially in the 
middle and high income stage, the impact of the change of residents' lifestyle on the 
environment cannot be ignored. In addition, the degree of the digital economy's moderating 
effect has strengthened: where digitalization is more advanced, economic growth exerts a 
greater influence on emissions. Therefore, future digital transformation must align more 
closely with environmental priorities via supportive policies and technological advances. 
Future studies can further explore the influence of other potential variables (such as cultural 
factors, international trade) regarding how economic expansion influences environmental 
outcomes. 

6.1. Optimize Urbanization Process and Promote Green City Planning 
The technology upgrading and rationalization brought about by the stage of urbanization can 
improve more efficient use of resources; however, as urbanization intensifies, energy costs tend 
to rise [21]. Accordingly, advocating for compact city development in urban growth is essential, 
reduce resource waste through efficient land use, prioritize the construction of green buildings, 
and implement renewable energy supply systems such as solar and geothermal heating. 
Meanwhile, it is necessary to optimize the urban public transport system, and to expand the 
coverage of subways and electric buses, and bike-sharing and pedestrian-friendly urban design 
should be promoted to reduce the use of private cars. 

6.2. Promote Green Consumption Patterns and Enhance Citizen's 
Environmental Consciousness 

Due to the large amount of carbon emissions from urbanization, this is considered to be a major 
factor leading to serious climate change problems. In order to solve this problem, various low-
carbon green development plans have been launched at the global city level [11]. Promote the 
upgrading of green consumption patterns by imposing taxes on energy-intensive goods such as 
luxury goods or disposable products to curb demand for products with high carbon emissions 
and promote shifting consumer patterns toward low-carbon lifestyles. At the same time, 
energy-saving and environmentally friendly products, such as eco-friendly vehicles and energy-
efficient appliances can be incentivized through subsidies or tax breaks to motivate the 
adoption of low-carbon products. Additionally, strengthening green certification and labeling 
systems can assist consumers in identifying sustainable products more effectively. 

6.3. Support the Transformation of Industrial Structure and Promote the 
Development of Low-carbon Industries 

Because of the large area of China, the industrial structure and technology are very different 
from each other. It is important to explore the long-term structural drivers to achieve carbon 
reduction. According to Roberts and Grimes [32], economic development level is the major 
determining factor of carbon emissions. If so, it is expected that the continuous transformation 
of Chinese industrial structure will be a structural factor influencing carbon emissions [29]. In 
the context of consumption upgrading, we will use the economies of scale brought by 
urbanization to promote development of services and the digital economy should be advanced, 
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supporting broader digital technology use in sectors such as retail and logistics, thereby 
boosting resource use efficiency. At the same time, we will encourage traditional high-polluting 
encourage high-polluting industries to upgrade into cleaner, value-added sectors, and to step 
up support to R&D and use of clean energy, energy saving and energy efficient materials. 
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