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Abstract 
This paper investigates the application of Artificial Intelligence and Building Energy 
Management Systems (AI-BEMS) to advance low-carbon urban development goals. An 
extensive 18-month experimental campaign conducted on 27 different case studies has 
addressed energy, CO2 savings, economic feasibility and operational reliability. The 
results indicate that the AI-BEMS system successfully realize energy usages reductions, 
ranging from averaged 28.3% for all types of buildings, to maximum reduction with 31.3% 
for the residential buildings. Reductions in carbon emissions averaged 32.1%, 
institutional building had the highest at 34.8%. The economic analysis showed 
promising results with a mean payback period of 3.3 years and 5 year ROI of 53%. System 
reliability statistics showed availability and the thermal comfort compliance were at 
98.2% and 93.8%, respectively. The percentage of correct AI predictions increased from 
78.0% to 95.0% across the operational time frame, indicating the system adapted and 
learnt. The results of statistical analysis indicated a significant enhancement in all items 
(p < 0.001). The results indicate that AI-BEMS integration is an established technology 
solution to attain the urban sustainable targets without forsaking economic feasibility 
and strong operational performance. 
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1. Introduction 

With the rapid spread of urbanization around the world come unprecedented strains on the 
world’s cities, both as the source of our most pressing environmental problems and perhaps 
our only hope for their solutions. As of now, urban (and urbanizing) areas are home to 56% of 
the global population and are expected to host 70% by 2050, and these cities are the dominant 
consumers of the world’s energy, representing about 78% of energy consumption and more 
than 70% of carbon dioxide emissions. This rapid urban sprawl in combination with increasing 
global concern over climate change has put further pressure on finding sustainable ways of 
managing urban energy, which can bridge the increasing demands of cities in developing with 
the challenge of carbon neutrality. The building sector is a strategically important sector for 
this urban energy landscape, since buildings consume about 40% of global energy and are 
characterized by numerous challenges as well as substantial opportunities for emission 
reduction [1]. However, conventional Building Energy Management Systems (BEMS) which are 
equipped with simple control capability are unable to cope with the advanced optimization 
principle required to meet the carbon reduction target which has more demanding standard 
for the today’s competitive urban environment. The inherent downside of commercial BEMS is 
that they are reactive by nature and cannot handle big data complexity of modern urban energy 
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ecosystems, eventually causing huge differences in energy performance between design and 
operation of buildings [2]. 
The connection of AI to BEMS is a key boundary crossing activity and one that underpins the 
ambition of creating intelligent, predictive and adaptive energy management system(s) that 
turn urban buildings from passive to active consumers in terms of energy alongside being a hub 
that can optimise the wider system through enhancing those of low-energy carbon urban 
development. The rise of machine learning algorithms, sensor networks with internet of things 
(IoT), and real-time data analytics has brought unparalleled potentials to smartly control 
building energy performance with intelligent pattern recognition, predictive modeling, and 
autonomous decision-making [3]. The promise of AI-based energy management systems are 
very significant, with a number of studies showing that energy consumption in commercial 
buildings can be reduced by up to 30%, and the electricity cost can be cut by more than 18% 
using intelligent optimization strategies. 
Several technological and policy advancements in 2024 and 2025 have further facilitated the 
meshing of AI technologies with building energy management [4]. The international energy 
management systems market is growing quickly at a CAGR of 13.58% in response to soaring 
energy prices, the demand for energy efficiency, and worldwide sustainability objectives [5]. 
Concurrently, government efforts and policy frameworks are providing enabling environments 
for the use of AI in urban energy systems, and the U.S. DOE (Department of Energy) has 
recognized AI as a key instrument to modernize the power grid and increase the energy 
efficiency of building portfolios. The European Union Directive 2024/1275 on Energy 
Performance of Building [6] clearly underscores the importance of intelligent systems to reach 
Net Zero Emissions by 2050. 
Modern AI implementations in the context of building energy management widely overlap with 
advanced AI methods, ranging from neural networks for short-term load forecasting, genetic 
algorithms for HVAC system optimization, reinforcement learning for adaptive control 
strategies and clustering algorithms for occupancy pattern analysis. These technologies allow 
real-time analysis of multi-dimensional dynamic data streams obtained from environmental 
sensors, occupancy sensors, weather predictions systems and grid management platforms that 
are used to optimize diverse systems in domain such as heating, ventilation and air conditioning 
(HVAC), lighting, and many others within the building [7]. Advanced practice has reported 
astonishing performance improvements, such as 20% reduction in heating energy use for 
predictive control system under optimal comfort conditions and 22.63% reduction of 
electricity cost for smart home energy management algorithm [8]. 
Integrated AI-BEMS application has strategic implications beyond optimized individual 
building operation, to district-scale energy balance and supported city overall carbon reduction 
plans. Smart city initiatives worldwide, such as in Singapore, Amsterdam and Seoul, have 
created an AI-based energy management system in urban areas which enables optimizing of 
building operations with renewable generation system, grid stability demand and response 
program. These holistic strategies turn buildings into flexible assets of urban energy systems 
that participate in optimization of the grid by minimizing carbon footprints though intelligent 
load management and renewable energy integration. 
In spite of the evidence of their promise and increasing adoption of AI-BEMS technologies, there 
are major knowledge gaps in the best approaches to integration, the scalability of this system 
to many buildings, and the long-run performance of these systems in the variety of urban 
regimes. The existing studies did not provide an overall framework covering the general 
assessment of the performance of different AI methods for different type of buildings and under 
different climatic and urban conditions. In addition, interoperability issues between legacy 
building infrastructure and AI platforms, as well as potential issues regarding data privacy, 
cybersecurity, and system reliability also need to be addressed to ensure ready adoption. 
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This study fills up these key knowledge gaps by focusing on the fusion between AI technologies 
and building energy management systems, especially for low-carbon urban development. The 
main aim is the development and validation of integrated methodologies for building energy 
performance optimization by means of AI based methodologies accounting for the contribution 
to urban carbon reduction goals. Key research objectives are: (a) to develop robust AI-
integration frameworks for different types of buildings and operational regimes; (b) to 
compare the effectiveness of different machine learning algorithms in reducing energy use and 
mitigating carbon emissions; (c) to examine the scalability of AI-BEMS integration from site 
level to district level; and (d) to establish performance metrics and criteria for assessing the 
contribution of intelligent building systems toward low-carbon urban development aims. 
This investigation is based upon a hypothesis that the systematic application of AI technologies 
within building energy management systems (BEMS) can lead to substantial improvements in 
energy use and carbon emissions, as compared to current state-of-the-art building 
management practices, with concomitant gains in system reliability, operational effectiveness, 
and occupant comfort. In addition, the study argues that AI-enabled buildings can function as 
building blocks of more comprehensive low-carbon urban development, as they can help to 
achieve city-level sustainability targets using coordinated energy management, demand 
response, and renewable integration. 
The impact of this research spans multiple arenas; it delivers conceived outcomes for building 
owners/operators who are considering options to reduce both the running cost and 
environmental impact of the building, it provides city planners/policymakers with guidance on 
developing strategies to build sustainable cities and it contributes to the scientific 
understanding of AI in urban energy systems. The results of this study will guide in the 
formulation of standards, policies, and best practices for deployment and operation of AI-BEMS 
and propel the transition towards intelligent, sustainable cities with capability of achieving 
aggressive carbon neutrality goals while achieving a high quality of livability and economic 
competitiveness 

2. Related Work 

The transformation from conventional control methods to intelligent, AI-enabled systems in 
Building Energy Management Systems, marks a large paradigm shift for optimizing energy in 
the urban settings. Conventional BEMSs have traditionally relied on reactive control tactics, 
being mostly triggered by fixed predefined set points, and simple scheduling routines that often 
ignore complex, dynamic relations that characterize state-of-the-art building systems.  Khaoula 
et al. (2022) note that although market values are set to increase to $108.9 billion by 2025 with 
a CAGR of 10.5%, traditional approaches to energy management remain challenged by complex 
optimization needs in order to achieve net-zero energy targets in modern urban settings [9]. 
Ultimately, the main constraints are associated with the inability of such systems to handle 
large scale, multi-dimensional data and their inability to predict, which in turn limits the 
performance of real energy use simulation and leads to considerable performance gap between 
design and operation. 
Recent machine learning tools developed for building energy systems have shown excellent 
potential for overcoming these drawbacks through the use of advanced algorithms. A detailed 
systematic review by Buildings journal [2025] indicates that machine learning algorithms, 
including supervised methods like support vector machines and random forests, show high 
fault detection accuracy and robust energy consumption prediction [10]. The study highlights 
that different learning paradigms offer different characteristics: supervised learning needs a 
large amount of labelled data for high accuracy, and unsupervised learning such as PCA and 
clustering provides superior recognition capability without labelled data at the price of the 
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difficulty in capturing complex nonlinear patterns. Deep learning approaches including CNN 
and LSTM models have shown better performance for energy usage prediction and real-time 
system optimization. 
The application of artificial intelligence to building energy management has resulted in 
measurable performance enhancements for a wide range of building types as well as 
operational environments. It has been estimated that the potential energy savings in office, 
residential, and educational buildings, to be 37%, 23%, and 21%, respectively by AI-optimized 
HVAC systems, based on real-world deployments and not simply engineering estimates [4]. 
This is accomplished using advanced algorithms like regression analysis, deep learning, and 
clustering (clustering using decision trees) on streams of real-time data from ambient 
temperature sensors, occupancy detectors, and energy meters. The methodical adoption of AI 
for optimization in HVAC control, lighting control, solar production forecasting and demand-
side consumption management displays efficiency gains of 20%–50% in various building 
applications, and recent work has shown that predictive control enabled by AI in these systems 
consistently achieves 20% reductions in heating power consumption without sacrificing 
comfort. 
The machine learning based building energy optimization has witnessed a tremendous rise in 
the research activity in terms of publication quantities, which grows on an average rate of 98.85% 
per year from 2020–2024, indicating a fast development and increasing attention for this 
emerging research field [11]. Current machine learning-based techniques for energy 
forecasting include classical statistics methods using random forest algorithms, deep learning 
techniques using long short-term memory networks and hybrid methods using gradient 
boosting regressor algorithms. Xia et., al. (2025) illustrate how active learning in machine 
learning can greatly improve environmental sustainability in green building energy 
consumption, with a prominent place for Building Automation Systems to enhance energy 
efficiency using predictive modeling that reduces consumption and maximizes indoor 
sustainability [12]. The study finds that although green construction methods are critical for 
reducing energy waste in the building sector, associated challenges including occupant 
behavior and energy management, frequently cause buildings to use 1.5 to 2.5 times more 
energy than was predicted. 
The advent of digital-twin technology based on Internet of Things (IoT) sensor networks 
presents unparalleled opportunities for real-time building energy optimization and predictive 
maintenance scheduling. Cespedes-Cubides and Jradi (2024) provide a holistic view of digital 
twin usage in operations and maintenance in buildings for better energy efficiency during the 
building lifecycle, such as implementing data flow between BIM, IoT sensor networks and 
Facility Management systems [13]. Digital twins can support advanced predictive maintenance 
subsystems including mechanical health monitoring, prognosis, and maintenance scheduling 
using ML models like ANNs, SVMs, and decision trees. Recent deployments also showed that 
auto fault detection in the AHUs is quite effective for different kinds of equipment and 
operational issues, and digital-twin enabled buildings can achieve 20% to 38% energy self-
sufficiency improvements (i.e., corresponding electricity cost reduction of 18%). 
The intersection of AI-induced digital twins with IoT for sustainable building environments has 
also undergone a rapid growth in research, where published papers have always been 
expanding from 2018 to 2024 and having sharply increased in 2023 and 2024 [14]. Modern DT 
frameworks utilize standardized parametric 3D geometry models for effective simulation and 
optimization of home energy systems with minimal service installation/commissioning 
complexity and maximized scalability. These integrated platforms offer users with live-
monitoring and actionable insights into their energy use, indoor environments, and how they 
can optimize it. The systematic literature review (SLR) indicates that buildings and cities are 
responsible for around 40% of the total energy consumption in the world and account for 36% 
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of the total emissions produced in the world or also known as carbon-dioxide (CO2) emissions, 
making these one of the most important factors of energy consumption and CO2 emissions and 
emphasizing the need for newer digital technologies in addressing residential energy efficiency. 
Smart city deployments in cities around the world have also shown the scalable prospects of 
AI–BEMS integration in through city wide and coordinated district-level energy management 
projects. Zhu et al. (2024) investigate the coupling coordination relationship between urban 
smart performance and low-carbon level by considering 52 typical smart and low-carbon pilot 
cities in China, in which it is found that smart city has significantly surpassed low-carbon city 
development but disparities are observed in several aspects, that calls for integrated methods 
[15]. The study observes an evident positive relationship between the smartness of a city and 
its low-carbon performance, and provides specific evidences showing that smart development 
contributes to urban low-carbon development to some extent in different economic, social and 
environmental context. These results highlight the need for coordinated development agendas 
that link AI-driven building solutions to wider urban sustainability blueprints. 
In the era of generative artificial intelligence applications in the context of building energy 
management, advancements in intelligent optimization have broadened the horizons beyond 
traditional machine learning solutions. The American Council for an Energy Efficient Economy 
notes that AI has the potential to reduce building energy usage and emissions by 8 to 19% by 
automating slow architectural design processes, using robotics to minimize waste on site, 
improving operations by predicting faults, and speeding up an energy audit using machine 
learning to reduce costs. By using generative AI, more complex, multidimensional analyses are 
possible, which are required to support such advanced energy management and control 
capabilities for example, capturing waste heat for use in industrial processes, giving building 
operators new levels of processing power to interpret data in order to better understand 
interrelated building variables and for grid managers to more easily find existing resources on 
the demand side of the grid new grid capacity optimization solutions. 
In 2024, Google recently made TensorFlow Smart Buildings Simulator and Dataset available as 
open-source, a pioneering milestone towards AI-based building energy optimization research 
and development democratization [16]. The combined dataset includes six years of telemetry 
data, gathered from three Google buildings, and offers real-world insights to the research 
community for developing and testing models of building dynamics and control that are based 
on reinforcement learning agents acting on the building’s control system with goals of reducing 
energy consumption and carbon emissions. This effort demonstrates a growing 
acknowledgement of the fact that buildings occupy a significant share of global energy use and 
greenhouse gas emissions, and that AI and ML are poised to play a significant role in reducing 
the carbon footprint of buildings. 
Although great progress has been made, there also exist several significant challenges and 
research gaps that need to be systematically explored in order to strengthen AI-BEMS 
integration research and implementation. Research Gap Literature suggests there is a lack of 
studies to solve the problem of data scarcity, and in particular for the retro-fitted building it 
may be a difficult task to have the comprehensive historical dataset. The interoperability issues 
between the current building infrastructure and new AI platforms and the issues related to data 
privacy, cyber security, and reliability, and potential installation and deployment will be the 
bottleneck of the implementation. The mass deployment from building level to district level and 
city-wide settings requires more investigations of the coordinated control strategies, the 
standardized communication protocols, and the integrated policy frameworks. In addition, 
longitudinal studies are needed to confirm sustained energy savings and carbon reduction 
benefits, alongside maintaining good occupant comfort and system reliability, from AI-BEMS 
across a range of environmental zones, buildings and operational regimes 
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3. Research Methdolgy  

This study is structured as a mixed-method study to analyze the implementation of AI with 
BEMS to decarbonize urban development: we interpret energy performance (quantitatively) 
and improvement practices (qualitatively). The proposed approach involves five related steps, 
including case study selection and characterization, AI algorithm development and 
implementation, data collection and processing framework, experimental design and validation, 
and performance evaluation metrics. 

3.1. Research Design and Case Study Selection 
The research plan pursues a comparative experimental approach following a stratified 
sampling procedure to obtain a representative panel including various building typologies, 
sizes and urban situations. The key selection criteria for the choice of case study buildings were; 
(1) the buildings were 5 to 20 years old; to represent typical urban building stock, (2) size, gross 
floor area (GFA) between 5000 and 50,000 square meters, (3) already have some basic BMS 
equipment installed, (4) building has a minimum of 12 months of historical energy 
consumption data, and (5) the building management is willing to collaborate for the purposes 
of making system modifications.  
Stratum system The stratification system classifies the buildings in three strata: residential 
complexes (R), commercial office buildings (C), and institutional buildings (I). Within both 
categories, buildings are further categorized by size: small (S: 5,000 – 15,000m²), medium (M: 
15,000 – 30,000m²), and large (L: 30,000 – 50,000m²). This constructs a systematic 3×3 matrix 
that can be used with a minimum of three buildings per cell, yielding 27 case study buildings 
situated in urban areas of different climatic conditions (and therefore different occupancy 
patterns and energy technology characteristics). 

3.2. AI Algorithm Development Framework 
The proposed AI integration framework is composed of various machine learning ensembles 
designed for different functionalities of building energy management. The main algorithms are 
Neural Network for energy demand prediction, Genetic Algorithm for multi-objective 
optimization, and Reinforcement Learning for adaptive control laws.  

3.3. Energy Demand Prediction Model 
The energy demand prediction utilizes a Long Short-Term Memory (LSTM) neural network 
architecture designed to capture temporal dependencies in building energy consumption 
patterns. The LSTM model is formulated as: 
 

ft = σ൫Wf· ൣh{t-1},xt൧+ bf൯ 

it = σ൫Wi· ൣh{t-1},xt൧+ bi൯ 

C෩t  = tanh൫WC· ൣh{t-1},xt൧+ bC൯ 

Ct = ft * C{t-1} + it* C෩t 

ot= σ൫Wo· ൣh{t-1},xt൧+ bo൯ 
ht= ot* tanh(Ct) 

 
Where ft, it, and ot represent forget, input, and output gates respectively, σ denotes the sigmoid 
function, W represents weight matrices, b denotes bias vectors, and Ct represents the cell state 
at time t. 
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3.4. Multi-Objective Optimization Algorithm 
The system optimization employs a Genetic Algorithm to solve the multi-objective optimization 
problem balancing energy consumption minimization, carbon emission reduction, and 
occupant comfort maintenance. The objective function is defined as: 
Minimize:  
 

F(x)= ൣf1(x), f2(x), f3(x)൧ 

 
Where: 

f1(x) = Energy consumption: Σᵢ=1ⁿ Pᵢ(t)× Δt 

f2(x) = Carbon emissions: Σᵢ=1ⁿ Pᵢ(t)× EFᵢ × Δt  

f3(x) = Comfort penalty: Σᵢ=1ⁿ หTsetpoint- Tactualห
2
 

Subject to constraints: 
20°C ≤ Tindoor≤ 26°C  
30% ≤ RH ≤ 70%   
400 ppm ≤ CO2≤ 1000 ppm  
P_min≤ P_total ≤ P_max 

3.5. Reinforcement Learning Control Strategy 
The adaptive control system implements a Q-learning algorithm for real-time decision making 
in HVAC operations. The Q-function is updated using: 
 

Q(st, at)← Q(st, at)+ αൣr{t+1}+ γ maxaQ൫s{t+1}, a൯- Q(st, at)൧ 

 
Where st  represents the system state at time t, at  is the action taken, r{t+1}   is the reward 
received, α is the learning rate (0.1), and γ is the discount factor (0.95). 

3.6. Data Collection and Processing Framework 
The data gathering platform uses an elaborate sensor network infrastructure combined with 
IoT devices on top for monitoring of building parameters in real-time. The sensor deployment 
plan consists of temperature and humidity sensors (accuracy of ±0.1°C, ±2% RH), occupancy 
detectors (PIR, CO₂-based), power meters (±1% accuracy), as well as outdoor weather stations. 
Raw sensor data undergoes a multi-stage preprocessing pipeline including outlier detection, 
missing data imputation, and feature engineering. The outlier detection employs the 
Interquartile Range (IQR) method: 
 

Outlier if: x < Q1- 1.5 × IQR or x > Q3+ 1.5 × IQR  
 
Missing data imputation utilizes linear interpolation for gaps <30 minutes and seasonal 
decomposition for longer periods: 
 

ximputed= Trend + Seasonal + Residualinterpolated  

 
Feature engineering creates derived variables including: 
 Thermal comfort index: PMV = f(Tair, RH, vair, MET, CLO)  
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 Occupancy density: ρ =
Noccupants

Afloor
  

 Weather severity index: WSI = α×(Tout- Tbase)2+ β×(RHout- RHbase)2  

3.7. Experimental Design and Control Framework 
The experimental procedure follows a Before-After-Control-Impact (BACI) approach, 
comparing the performance of AI integrated BEMS to the performance of conventional non-AI-
based systems (comparing with the baseline of before deployment). The period of the 
experiment is four semesters (one and half year), that are structured along three phases: 
baseline measurement (6 months), AI system deployment and training (6 months) and 
evaluation (6 months). 
3.7.1. System Architecture Implementation 
The system is designed relatively in 5 layers as follows: sensor data acquisition layer, edge 
computing preprocessing layer, cloud AI processing layer, optimization decision engine layer 
and actuator control interface layer. Secure bidirectional data out streamed live via secure 
communication protocols at <500ms latency for control decisions. 
3.7.2. Performance Metrics and Evaluation Criteria 
The evaluation framework employs multiple key performance indicators quantifying energy 
efficiency, carbon reduction, and operational effectiveness. Primary metrics include: 
Energy Performance Metrics: 

 Energy Use Intensity reduction: ΔEUI =
(EUIbaseline- EUIAI)

EUIbaseline
× 100%  

 Peak demand reduction: ΔPD =
(PDbaseline- PDAI)

PDbaseline
× 100%  

 Load factor improvement: LF =
Eaverage

Epeak
 

Carbon Footprint Metrics: 

 Carbon emission intensity: CEI =
COemissions

2

Afloor
 (kg CO₂/m²/year) 

 Carbon reduction rate: CRR =
(CEbaseline- CEAI)

CEbaseline
× 100% 

Economic Performance Metrics: 

 Energy cost savings: ECS =
(ECbaseline- ECAI)

ECbaseline
× 100% 

 Return on investment: ROI =
൫Annualsavings- Annualcosts൯

Initialinvestment
 

Comfort and Reliability Metrics: 

 Thermal comfort compliance: TCC = ൬
Hoursincomfortzone

Totalhours
൰ × 100% 

 System availability: SA = ቀ
Operationalhours

Totalhours
ቁ × 100% 

3.8. Statistical Analysis Framework 
Statistical validation employs Analysis of Variance (ANOVA) to determine significance of 
performance improvements across building types and operational conditions. The statistical 
model is formulated as: 
 

Yijk= μ + αi+ βj+ (αβ)ij+ εijk 
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Where Yijk represents the performance metric, μ is the overall mean, α_i is the building type 
effect, βj is the AI system effect, (αβ)ij represents interaction effects, and εijk is the random error 

term. 
Confidence intervals for performance improvements are calculated using: 
 

CI = x̄± tα
2,df× ൬

s

√n
൰ 

 
Where x̄ is the sample mean, tα

2
,df is the critical t-value, s is the sample standard deviation, and 

n is the sample size. Statistical significance is determined at p < 0.05 with effect sizes calculated 
using Cohen's d for practical significance assessment. 
The approach provides reproducibility through standardized protocols, automated data 
acquisition procedures and full documentation of all experimental settings and conditions. 
Quality control activities involve sensor calibration check, data validation and standard system 
performance check to ensure accuracy of measurements during drought experiments. 

4. Analysis and Discussion 

The 18-month experimental campaign in 27 case study buildings reveals that AI-integrated 
Building Energy Management Systems yield large improvements to energy efficiency, carbon 
reduction and operational performance. Results are reported among four main groups which 
are statistically verified for significant augmentation in all criteria. 

4.1. Energy Performance Results 
AI-BEMS integration achieved substantial energy consumption reductions across all building 
categories. Figure 1 presents the energy consumption comparison and Energy Use Intensity 
(EUI) reduction by building type. Residential buildings demonstrated the highest improvement 
at 31.3% EUI reduction (145.2 to 99.8 kWh/m²/year), followed by institutional facilities at 27.8% 
(152.3 to 109.9 kWh/m²/year), and commercial buildings at 26.1% (168.7 to 124.6 
kWh/m²/year). 
 

 
Figure 1. Energy Performance Comparison by Building Type 
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Figure 2. Seasonal Energy Performance Analysis 

 
Figure 2 illustrates the seasonal performance analysis through monthly energy consumption 
comparison and reduction percentages. Winter months demonstrated 25% average energy 
reduction, spring achieved peak performance at 29-30%, summer maintained 27% reduction, 
and fall showed variable performance ranging from 27-31%. The AI system maintained 
consistent energy savings throughout the year, with baseline systems ranging from 128.7-185.3 
kWh/m²/month compared to AI-integrated systems at 90.4-139.2 kWh/m²/month. 
Key findings include Overall average energy reduction is 28.3%. Seasonal variation 
demonstrates AI adaptability to weather patterns, Consistent performance across diverse 
operational contexts and Spring months show optimal AI system performance due to moderate 
weather conditions 

4.2. Carbon Emission Reduction Analysis 

 
Figure 3. Carbon Emission Reduction Analysis 

 
Figure 3 demonstrates carbon emission reduction achievements across building types through 
four comprehensive analyses. Carbon emission reductions strongly correlated with energy 
improvements, achieving substantial decreases across all categories. Institutional buildings 
achieved the highest carbon reduction at 34.8% (98.0 to 56.5 kg CO₂/m²/year), followed by 



Frontiers in Sustainable Development Volume 5 Issue 10, 2025

ISSN: 2710-0723 

 

114 

residential buildings at 32.1% (89.0 to 60.4 kg CO₂/m²/year), and commercial buildings at 30.4% 
(96.2 to 67.0 kg CO₂/m²/year). 
Monthly carbon emission comparison shows consistent performance throughout the year, with 
cumulative carbon savings reaching 37.2 kg CO₂/m²/year by December. Winter months 
showed highest absolute emissions (11.2 kg CO₂/m²/month baseline vs. 7.6 kg CO₂/m²/month 
AI-integrated), while summer months demonstrated more moderate levels (8.8 vs. 6.0 kg 
CO₂/m²/month respectively). 
Key findings include; 
 Overall average carbon reduction: 32.1% 
 Strong correlation between energy and carbon reduction (r = 0.967) 
 Institutional buildings benefit most from extended operating hours 
 Progressive cumulative savings validate long-term environmental impact 

4.3. Economic Performance Analysis 
Figure 4 presents comprehensive economic analysis including annual savings, payback periods, 
ROI calculations, and cost-benefit analysis. Annual energy cost savings varied by building type 
and size, with large commercial buildings achieving highest savings at $20.4/m², followed by 
medium commercial at $18.9/m², and small commercial at $16.8/m². Residential buildings 
showed consistent savings from $11.2-$13.4/m², while institutional buildings achieved $12.9-
$15.0/m². 
 

 
Figure 4. Economic Performance Analysis 

 
Payback period analysis reveals favorable economic outcomes with all periods below the 5-
year threshold. Commercial buildings demonstrated shortest payback at 3.1 years average, 
while residential and institutional buildings both achieved 3.4 years. The 5-year ROI analysis 
shows commercial buildings achieving 61-64%, residential buildings 45-52%, and institutional 
buildings 44-50%. Key findings includes,  
 Average payback period: 3.3 years across all building types 
 Commercial buildings achieve shortest payback due to higher baseline costs 
 Strong correlation between investment and savings (R² = 0.976) 
 10-year cost-benefit analysis shows net benefits exceeding $100/m² 
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4.4. System Reliability and Performance Metrics 
Figure 5 demonstrates exceptional operational stability through four key performance 
indicators over the 18-month period. System availability progressively improved from 95.2% 
in month 1 to 99.2% by month 18, averaging 98.2%. Thermal comfort compliance increased 
from 89.2% to 95.6%, averaging 93.8% while maintaining energy efficiency improvements. 
AI prediction accuracy learning curve reveals three distinct phases: learning phase (months 1-
6) showing rapid improvement from 78.0% to 90.5%, optimization phase (months 6-12) 
reaching 94.5%, and stable operation phase (months 12-18) maintaining 95.0% accuracy. 
Energy savings consistency improved from 18.0% initial savings to 29.8% by month 18, 
averaging 27.4%.  
Key findings includes, 
 System availability: 98.2% average, exceeding industry standards 
 Thermal comfort maintained while achieving energy savings 
 AI learning demonstrates continuous performance improvement 
 Progressive optimization validates adaptive capabilities 
  

 
Figure 5. System Reliability and Performance Metrics 

4.5. Comprehensive Performance Evaluation 
Figure 6 provides performance targets versus achieved results and overall performance profile 
analysis. The AI-BEMS implementation exceeded expectations across all key performance 
indicators: energy reduction achieved 28.3% vs. 25.0% target (+13.2% overperformance), 
carbon reduction 32.1% vs. 30.0% target (+7.0%), cost savings 29.7% vs. 25.0% target 
(+18.8%), system availability 98.7% vs. 95.0% target (+3.9%), comfort compliance 94.3% vs. 
90.0% target (+4.8%), and prediction accuracy 94.6% vs. 90.0% target (+5.1%). 
The radar chart demonstrates balanced achievement across all performance dimensions, with 
achieved performance consistently exceeding target performance. This validates the multi-
objective optimization approach and demonstrates simultaneous improvements across 
competing objectives. Key findings includes;  
 All performance targets exceeded by significant margins 
 Balanced performance profile across all metrics 
 Multi-objective optimization successfully implemented 
 No significant trade-offs between competing objectives 
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Figure 6. Comprehensive Performance Evaluation 

4.6. Detailed Performance Analysis by Building Category 
Figure 7 presents detailed performance analysis through heatmap visualization, building size 
comparison, investment-savings relationship, and payback period analysis. The performance 
heatmap reveals consistent high performance across all building categories, with energy 
reduction ranging from 24.1% to 32.6%, carbon reduction from 28.9% to 36.1%, and cost 
savings from 26.9% to 33.8%. 
 

 
Figure 7. Detailed Performance Analysis by Building Category 

 
Energy reduction by building size shows economies of scale, with large buildings averaging 31.1% 
reduction compared to 28.5% for small buildings. The investment-savings relationship 
demonstrates strong positive correlation (R² = 0.976), validating economic scalability. Average 
payback periods show commercial buildings at 3.1 years, residential at 3.4 years, and 
institutional at 3.4 years, all well below the 4-year threshold. Key findings include; 
 Consistent performance across all building types and sizes 
 Larger buildings achieve greater energy reductions (economies of scale) 
 Strong economic scalability validated 
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 All building categories demonstrate favorable economic returns 

5. Conclusion 

The successful findings generated from this extensive work can provide firm evidence that the 
AI technology combined with BEMS is a transformative approach toward delivering significant 
advances in the urban building energy performance enhancement and low carbon targets. The 
18 months of field-based experimental research on 27 different cases shows strong empirical 
evidence that AI-BEMSS integrations can increase the economic performance and viability of 
building performance and lead to significant measurable, sustained beneficial building 
performance in diverse areas of performance while maintaining reliability and operability. 
Objectives – Primary: To date the main research objectives have been met as substantial energy 
reductions have been achieved in AI-integrated systems: Infrastructure integrated AI systems 
has resulted in average energy use savings of 28.3% in the different types of buildings, well over 
the proposed baseline 25% reduction. Residential sector saved the most energy by 31.3%, 
followed by institutional (27.8%) and commercial (26.1%) buildings. These findings support 
the hypothesis that AI algorithms can better control complex building energy systems when 
compared to traditional approaches by adapting to seasonal and occupancy trends and 
operational constraints without sacrificing year-round performance. 
A 32.1% reduction in overall carbon emissions is an additional demonstration effect of 
environmental paybacks of AI-BEMS integration in the categories of all building. The high 
correlation between the improving degree of building energy efficiency and the carbon 
emission reductions (r = 0.967) states that building energy optimization can also bring direct 
contribution to the city carbon emission reduction. The greatest carbon savings potential was 
from institutional buildings at 34.8% due to the longer hours that these buildings operate and 
more centralized systems allowing higher level control strategies to be deployed using AI. 
The economic study confirms the economical potential of the AI-BEMS technology, as the 
investment return is in general positive regardless the type and size of the building. The median 
payback time of 3.3 years is well within the range deemed acceptable for building energy 
investments, and 5-yr average ROI of 53% is significantly higher than typical expectations on 
traditional building efficiency projects. The high correlation (R² = 0.976) between initial 
investment and annual savings emphasizes the scalability of such economic benefits and 
underpins more expansive deployment of the urban sustainability schemes. 
System reliability and performance indices confirm that AI-BEMS technology is mature and 
strong enough for practical realization. At 98.2%, the average system availability is better than 
accepted industry norms for building management systems and the average thermal comfort 
compliance of 93.8% demonstrates the technology’s capability to balance a range of competing 
objectives. The AI prediction accuracy learning curve from 78.0% and 95.0% over operations 
demonstrates the learning capability for continuously improving performance with accruing 
experience and data. 
The findings of this research also have implications beyond the performance of the individual 
building, in terms of urban sustainability. The strong consistent evidence of AI-BEMS effect can 
offer confidence for the large scale deployment in the urban area where the buildings are 
diverse in size and building operation style. The technology’s compatibility with existing 
building equipment, including legacy systems, reduces the barrier to entry of implementation 
and enables retrofit applications crucial to improving the stock of existing urban buildings. 
Further research should pay attention to sub-district-level collaborative scheduling strategies 
based on the AI-BEMS for community energy optimization and grid integration. Researching 
advanced machine learning techniques, such as federated learning methods for preserving data 
privacy and supporting collaborative optimization, is a promising direction toward improving 
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progress. Further longitudinal studies beyond 18-month time frame would also be useful to 
inform long-term durability of the system and continued benefits in performance. 
The policy conclusion of this study encourages governments to consider AI-BEMS adoption as 
a primary strategy to meet carbon neutrality goals, and building codes, incentive programs and 
urban plans to develop or promote AI-BEMS immensely. The proven economics and technical 
performance support a framework of regulatory requirements and industry practices that may 
accelerate the introduction of technology while maintaining quality and performance. 
In Conclusion, AI driven BEMS are a proven and scalable technology solution for delivering low-
carbon urban development goals. The significant strides in energy-efficiency, carbon reduction, 
cost-effectiveness and operational reliability realized in a wide range of buildings demonstrate 
the technology’s readiness for deployment. The integration of AI with BEMS by cities across the 
world aiming for aggressive decarbonization targets is a practical, affordable approach to 
transition from urban buildings passive energy consumers to contributors towards a 
sustainable urban energy ecosystem. 
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