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Abstract

This paper investigates the application of Artificial Intelligence and Building Energy
Management Systems (AI-BEMS) to advance low-carbon urban development goals. An
extensive 18-month experimental campaign conducted on 27 different case studies has
addressed energy, CO2 savings, economic feasibility and operational reliability. The
results indicate that the AI-BEMS system successfully realize energy usages reductions,
ranging from averaged 28.3% for all types of buildings, to maximum reduction with 31.3%
for the residential buildings. Reductions in carbon emissions averaged 32.1%,
institutional building had the highest at 34.8%. The economic analysis showed
promising results with a mean payback period of 3.3 years and 5 year ROI of 53%. System
reliability statistics showed availability and the thermal comfort compliance were at
98.2% and 93.8%, respectively. The percentage of correct Al predictions increased from
78.0% to 95.0% across the operational time frame, indicating the system adapted and
learnt. The results of statistical analysis indicated a significant enhancement in all items
(p < 0.001). The results indicate that AI-BEMS integration is an established technology
solution to attain the urban sustainable targets without forsaking economic feasibility
and strong operational performance.
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1. Introduction

With the rapid spread of urbanization around the world come unprecedented strains on the
world’s cities, both as the source of our most pressing environmental problems and perhaps
our only hope for their solutions. As of now, urban (and urbanizing) areas are home to 56% of
the global population and are expected to host 70% by 2050, and these cities are the dominant
consumers of the world’s energy, representing about 78% of energy consumption and more
than 70% of carbon dioxide emissions. This rapid urban sprawl in combination with increasing
global concern over climate change has put further pressure on finding sustainable ways of
managing urban energy, which can bridge the increasing demands of cities in developing with
the challenge of carbon neutrality. The building sector is a strategically important sector for
this urban energy landscape, since buildings consume about 40% of global energy and are
characterized by numerous challenges as well as substantial opportunities for emission
reduction [1]. However, conventional Building Energy Management Systems (BEMS) which are
equipped with simple control capability are unable to cope with the advanced optimization
principle required to meet the carbon reduction target which has more demanding standard
for the today’s competitive urban environment. The inherent downside of commercial BEMS is
that they are reactive by nature and cannot handle big data complexity of modern urban energy
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ecosystems, eventually causing huge differences in energy performance between design and
operation of buildings [2].

The connection of Al to BEMS is a key boundary crossing activity and one that underpins the
ambition of creating intelligent, predictive and adaptive energy management system(s) that
turn urban buildings from passive to active consumers in terms of energy alongside being a hub
that can optimise the wider system through enhancing those of low-energy carbon urban
development. The rise of machine learning algorithms, sensor networks with internet of things
(IoT), and real-time data analytics has brought unparalleled potentials to smartly control
building energy performance with intelligent pattern recognition, predictive modeling, and
autonomous decision-making [3]. The promise of Al-based energy management systems are
very significant, with a number of studies showing that energy consumption in commercial
buildings can be reduced by up to 30%, and the electricity cost can be cut by more than 18%
using intelligent optimization strategies.

Several technological and policy advancements in 2024 and 2025 have further facilitated the
meshing of Al technologies with building energy management [4]. The international energy
management systems market is growing quickly at a CAGR of 13.58% in response to soaring
energy prices, the demand for energy efficiency, and worldwide sustainability objectives [5].
Concurrently, government efforts and policy frameworks are providing enabling environments
for the use of Al in urban energy systems, and the U.S. DOE (Department of Energy) has
recognized Al as a key instrument to modernize the power grid and increase the energy
efficiency of building portfolios. The European Union Directive 2024/1275 on Energy
Performance of Building [6] clearly underscores the importance of intelligent systems to reach
Net Zero Emissions by 2050.

Modern Al implementations in the context of building energy management widely overlap with
advanced Al methods, ranging from neural networks for short-term load forecasting, genetic
algorithms for HVAC system optimization, reinforcement learning for adaptive control
strategies and clustering algorithms for occupancy pattern analysis. These technologies allow
real-time analysis of multi-dimensional dynamic data streams obtained from environmental
sensors, occupancy sensors, weather predictions systems and grid management platforms that
are used to optimize diverse systems in domain such as heating, ventilation and air conditioning
(HVAC), lighting, and many others within the building [7]. Advanced practice has reported
astonishing performance improvements, such as 20% reduction in heating energy use for
predictive control system under optimal comfort conditions and 22.63% reduction of
electricity cost for smart home energy management algorithm [8].

Integrated AI-BEMS application has strategic implications beyond optimized individual
building operation, to district-scale energy balance and supported city overall carbon reduction
plans. Smart city initiatives worldwide, such as in Singapore, Amsterdam and Seoul, have
created an Al-based energy management system in urban areas which enables optimizing of
building operations with renewable generation system, grid stability demand and response
program. These holistic strategies turn buildings into flexible assets of urban energy systems
that participate in optimization of the grid by minimizing carbon footprints though intelligent
load management and renewable energy integration.

In spite of the evidence of their promise and increasing adoption of AI-BEMS technologies, there
are major knowledge gaps in the best approaches to integration, the scalability of this system
to many buildings, and the long-run performance of these systems in the variety of urban
regimes. The existing studies did not provide an overall framework covering the general
assessment of the performance of different Al methods for different type of buildings and under
different climatic and urban conditions. In addition, interoperability issues between legacy
building infrastructure and Al platforms, as well as potential issues regarding data privacy,
cybersecurity, and system reliability also need to be addressed to ensure ready adoption.
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This study fills up these key knowledge gaps by focusing on the fusion between Al technologies
and building energy management systems, especially for low-carbon urban development. The
main aim is the development and validation of integrated methodologies for building energy
performance optimization by means of Al based methodologies accounting for the contribution
to urban carbon reduction goals. Key research objectives are: (a) to develop robust Al-
integration frameworks for different types of buildings and operational regimes; (b) to
compare the effectiveness of different machine learning algorithms in reducing energy use and
mitigating carbon emissions; (c) to examine the scalability of AI-BEMS integration from site
level to district level; and (d) to establish performance metrics and criteria for assessing the
contribution of intelligent building systems toward low-carbon urban development aims.

This investigation is based upon a hypothesis that the systematic application of Al technologies
within building energy management systems (BEMS) can lead to substantial improvements in
energy use and carbon emissions, as compared to current state-of-the-art building
management practices, with concomitant gains in system reliability, operational effectiveness,
and occupant comfort. In addition, the study argues that Al-enabled buildings can function as
building blocks of more comprehensive low-carbon urban development, as they can help to
achieve city-level sustainability targets using coordinated energy management, demand
response, and renewable integration.

The impact of this research spans multiple arenas; it delivers conceived outcomes for building
owners/operators who are considering options to reduce both the running cost and
environmental impact of the building, it provides city planners/policymakers with guidance on
developing strategies to build sustainable cities and it contributes to the scientific
understanding of Al in urban energy systems. The results of this study will guide in the
formulation of standards, policies, and best practices for deployment and operation of AI-BEMS
and propel the transition towards intelligent, sustainable cities with capability of achieving
aggressive carbon neutrality goals while achieving a high quality of livability and economic
competitiveness

2. Related Work

The transformation from conventional control methods to intelligent, Al-enabled systems in
Building Energy Management Systems, marks a large paradigm shift for optimizing energy in
the urban settings. Conventional BEMSs have traditionally relied on reactive control tactics,
being mostly triggered by fixed predefined set points, and simple scheduling routines that often
ignore complex, dynamic relations that characterize state-of-the-art building systems. Khaoula
et al. (2022) note that although market values are set to increase to $108.9 billion by 2025 with
a CAGR of 10.5%, traditional approaches to energy management remain challenged by complex
optimization needs in order to achieve net-zero energy targets in modern urban settings [9].
Ultimately, the main constraints are associated with the inability of such systems to handle
large scale, multi-dimensional data and their inability to predict, which in turn limits the
performance of real energy use simulation and leads to considerable performance gap between
design and operation.

Recent machine learning tools developed for building energy systems have shown excellent
potential for overcoming these drawbacks through the use of advanced algorithms. A detailed
systematic review by Buildings journal [2025] indicates that machine learning algorithms,
including supervised methods like support vector machines and random forests, show high
fault detection accuracy and robust energy consumption prediction [10]. The study highlights
that different learning paradigms offer different characteristics: supervised learning needs a
large amount of labelled data for high accuracy, and unsupervised learning such as PCA and
clustering provides superior recognition capability without labelled data at the price of the
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difficulty in capturing complex nonlinear patterns. Deep learning approaches including CNN
and LSTM models have shown better performance for energy usage prediction and real-time
system optimization.

The application of artificial intelligence to building energy management has resulted in
measurable performance enhancements for a wide range of building types as well as
operational environments. It has been estimated that the potential energy savings in office,
residential, and educational buildings, to be 37%, 23%, and 21%, respectively by Al-optimized
HVAC systems, based on real-world deployments and not simply engineering estimates [4].
This is accomplished using advanced algorithms like regression analysis, deep learning, and
clustering (clustering using decision trees) on streams of real-time data from ambient
temperature sensors, occupancy detectors, and energy meters. The methodical adoption of Al
for optimization in HVAC control, lighting control, solar production forecasting and demand-
side consumption management displays efficiency gains of 20%-50% in various building
applications, and recent work has shown that predictive control enabled by Al in these systems
consistently achieves 20% reductions in heating power consumption without sacrificing
comfort.

The machine learning based building energy optimization has witnessed a tremendous rise in
the research activity in terms of publication quantities, which grows on an average rate of 98.85%
per year from 2020-2024, indicating a fast development and increasing attention for this
emerging research field [11]. Current machine learning-based techniques for energy
forecasting include classical statistics methods using random forest algorithms, deep learning
techniques using long short-term memory networks and hybrid methods using gradient
boosting regressor algorithms. Xia et., al. (2025) illustrate how active learning in machine
learning can greatly improve environmental sustainability in green building energy
consumption, with a prominent place for Building Automation Systems to enhance energy
efficiency using predictive modeling that reduces consumption and maximizes indoor
sustainability [12]. The study finds that although green construction methods are critical for
reducing energy waste in the building sector, associated challenges including occupant
behavior and energy management, frequently cause buildings to use 1.5 to 2.5 times more
energy than was predicted.

The advent of digital-twin technology based on Internet of Things (IoT) sensor networks
presents unparalleled opportunities for real-time building energy optimization and predictive
maintenance scheduling. Cespedes-Cubides and Jradi (2024) provide a holistic view of digital
twin usage in operations and maintenance in buildings for better energy efficiency during the
building lifecycle, such as implementing data flow between BIM, IoT sensor networks and
Facility Management systems [13]. Digital twins can support advanced predictive maintenance
subsystems including mechanical health monitoring, prognosis, and maintenance scheduling
using ML models like ANNs, SVMs, and decision trees. Recent deployments also showed that
auto fault detection in the AHUs is quite effective for different kinds of equipment and
operational issues, and digital-twin enabled buildings can achieve 20% to 38% energy self-
sufficiency improvements (i.e., corresponding electricity cost reduction of 18%).

The intersection of Al-induced digital twins with IoT for sustainable building environments has
also undergone a rapid growth in research, where published papers have always been
expanding from 2018 to 2024 and having sharply increased in 2023 and 2024 [14]. Modern DT
frameworks utilize standardized parametric 3D geometry models for effective simulation and
optimization of home energy systems with minimal service installation/commissioning
complexity and maximized scalability. These integrated platforms offer users with live-
monitoring and actionable insights into their energy use, indoor environments, and how they
can optimize it. The systematic literature review (SLR) indicates that buildings and cities are
responsible for around 40% of the total energy consumption in the world and account for 36%
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of the total emissions produced in the world or also known as carbon-dioxide (CO2) emissions,
making these one of the most important factors of energy consumption and CO2 emissions and
emphasizing the need for newer digital technologies in addressing residential energy efficiency.

Smart city deployments in cities around the world have also shown the scalable prospects of
AI-BEMS integration in through city wide and coordinated district-level energy management
projects. Zhu et al. (2024) investigate the coupling coordination relationship between urban
smart performance and low-carbon level by considering 52 typical smart and low-carbon pilot
cities in China, in which it is found that smart city has significantly surpassed low-carbon city
development but disparities are observed in several aspects, that calls for integrated methods
[15]. The study observes an evident positive relationship between the smartness of a city and
its low-carbon performance, and provides specific evidences showing that smart development
contributes to urban low-carbon development to some extent in different economic, social and
environmental context. These results highlight the need for coordinated development agendas
that link Al-driven building solutions to wider urban sustainability blueprints.

In the era of generative artificial intelligence applications in the context of building energy
management, advancements in intelligent optimization have broadened the horizons beyond
traditional machine learning solutions. The American Council for an Energy Efficient Economy
notes that Al has the potential to reduce building energy usage and emissions by 8 to 19% by
automating slow architectural design processes, using robotics to minimize waste on site,
improving operations by predicting faults, and speeding up an energy audit using machine
learning to reduce costs. By using generative Al, more complex, multidimensional analyses are
possible, which are required to support such advanced energy management and control
capabilities for example, capturing waste heat for use in industrial processes, giving building
operators new levels of processing power to interpret data in order to better understand
interrelated building variables and for grid managers to more easily find existing resources on
the demand side of the grid new grid capacity optimization solutions.

In 2024, Google recently made TensorFlow Smart Buildings Simulator and Dataset available as
open-source, a pioneering milestone towards Al-based building energy optimization research
and development democratization [16]. The combined dataset includes six years of telemetry
data, gathered from three Google buildings, and offers real-world insights to the research
community for developing and testing models of building dynamics and control that are based
on reinforcement learning agents acting on the building’s control system with goals of reducing
energy consumption and carbon emissions. This effort demonstrates a growing
acknowledgement of the fact that buildings occupy a significant share of global energy use and
greenhouse gas emissions, and that Al and ML are poised to play a significant role in reducing
the carbon footprint of buildings.

Although great progress has been made, there also exist several significant challenges and
research gaps that need to be systematically explored in order to strengthen AI-BEMS
integration research and implementation. Research Gap Literature suggests there is a lack of
studies to solve the problem of data scarcity, and in particular for the retro-fitted building it
may be a difficult task to have the comprehensive historical dataset. The interoperability issues
between the current building infrastructure and new Al platforms and the issues related to data
privacy, cyber security, and reliability, and potential installation and deployment will be the
bottleneck of the implementation. The mass deployment from building level to district level and
city-wide settings requires more investigations of the coordinated control strategies, the
standardized communication protocols, and the integrated policy frameworks. In addition,
longitudinal studies are needed to confirm sustained energy savings and carbon reduction
benefits, alongside maintaining good occupant comfort and system reliability, from AI-BEMS
across a range of environmental zones, buildings and operational regimes
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3. Research Methdolgy

This study is structured as a mixed-method study to analyze the implementation of Al with
BEMS to decarbonize urban development: we interpret energy performance (quantitatively)
and improvement practices (qualitatively). The proposed approach involves five related steps,
including case study selection and characterization, Al algorithm development and
implementation, data collection and processing framework, experimental design and validation,
and performance evaluation metrics.

3.1. Research Design and Case Study Selection

The research plan pursues a comparative experimental approach following a stratified
sampling procedure to obtain a representative panel including various building typologies,
sizes and urban situations. The key selection criteria for the choice of case study buildings were;
(1) the buildings were 5 to 20 years old; to represent typical urban building stock, (2) size, gross
floor area (GFA) between 5000 and 50,000 square meters, (3) already have some basic BMS
equipment installed, (4) building has a minimum of 12 months of historical energy
consumption data, and (5) the building management is willing to collaborate for the purposes
of making system modifications.

Stratum system The stratification system classifies the buildings in three strata: residential
complexes (R), commercial office buildings (C), and institutional buildings (I). Within both
categories, buildings are further categorized by size: small (S: 5,000 - 15,000m?), medium (M:
15,000 - 30,000m?), and large (L: 30,000 - 50,000m?). This constructs a systematic 3x3 matrix
that can be used with a minimum of three buildings per cell, yielding 27 case study buildings
situated in urban areas of different climatic conditions (and therefore different occupancy
patterns and energy technology characteristics).

3.2. Al Algorithm Development Framework

The proposed Al integration framework is composed of various machine learning ensembles
designed for different functionalities of building energy management. The main algorithms are
Neural Network for energy demand prediction, Genetic Algorithm for multi-objective
optimization, and Reinforcement Learning for adaptive control laws.

3.3. Energy Demand Prediction Model

The energy demand prediction utilizes a Long Short-Term Memory (LSTM) neural network
architecture designed to capture temporal dependencies in building energy consumption
patterns. The LSTM model is formulated as:

1, = o(Wy [hgnxe]+ by)
i, = o(W; [hgenyxi]+ b;)

C, = tanh(W¢ [hypyx ]+ be)
C=f,* Can+i*C,
0= J(Wo' [h{t-l}’xt]+ bo)
h,= o,* tanh(C,)

Where f, i, and o, represent forget, input, and output gates respectively, o denotes the sigmoid

function, W represents weight matrices, b denotes bias vectors, and C; represents the cell state
attime t.
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3.4. Multi-Objective Optimization Algorithm

The system optimization employs a Genetic Algorithm to solve the multi-objective optimization
problem balancing energy consumption minimization, carbon emission reduction, and
occupant comfort maintenance. The objective function is defined as:

Minimize:
FG)= [/ 6. f ). f )]

Where:

(%) = Energy consumption: ;=" P;(£)x At

fz(x) = Carbon emissions: ;"1™ P;(t)x EF; x At

£ (x) = Comfort penalty: £ | Teeppoine- Tactual]

Subject to constraints:

20°C < Tipgoors 26°C

30% < RH<70%

400 ppm < CO*< 1000 ppm

P_min< P_total < P_max

3.5. Reinforcement Learning Control Strategy

The adaptive control system implements a Q-learning algorithm for real-time decision making
in HVAC operations. The Q-function is updated using:

OGy, a)— Oy, a )t aﬁ’[zﬂ]’*’ Y maxaQ(?[lH}, a}' 06, az)/

Where s, represents the system state at time t, a, is the action taken, r,;; is the reward
received, a is the learning rate (0.1), and y is the discount factor (0.95).

3.6. Data Collection and Processing Framework

The data gathering platform uses an elaborate sensor network infrastructure combined with
IoT devices on top for monitoring of building parameters in real-time. The sensor deployment
plan consists of temperature and humidity sensors (accuracy of £0.1°C, +2% RH), occupancy
detectors (PIR, CO,-based), power meters (+1% accuracy), as well as outdoor weather stations.

Raw sensor data undergoes a multi-stage preprocessing pipeline including outlier detection,
missing data imputation, and feature engineering. The outlier detection employs the
Interquartile Range (IQR) method:

Outlier if: x < Ql- 1.5 x IQR or x > Q3+ 1.5 x IOR

Missing data imputation utilizes linear interpolation for gaps <30 minutes and seasonal
decomposition for longer periods:

Ximputea= 1rend + Seasonal + Residual;ye,poiared

Feature engineering creates derived variables including:
® Thermal comfort index: PMV = f(T,;,, RH, vy, MET, CLO)

110



Frontiers in Sustainable Development Volume 5 Issue 10, 2025
ISSN: 2710-0723

. N,
o Occupancy denSIty: p= occupants
Aﬂoor

® Weather severity index: WSI = ax (T, ;- Tpase)*+ B* (RH oy~ RHpgse )

3.7. Experimental Design and Control Framework

The experimental procedure follows a Before-After-Control-Impact (BACI) approach,
comparing the performance of Al integrated BEMS to the performance of conventional non-Al-
based systems (comparing with the baseline of before deployment). The period of the
experiment is four semesters (one and half year), that are structured along three phases:
baseline measurement (6 months), Al system deployment and training (6 months) and
evaluation (6 months).

3.7.1. System Architecture Implementation

The system is designed relatively in 5 layers as follows: sensor data acquisition layer, edge
computing preprocessing layer, cloud Al processing layer, optimization decision engine layer
and actuator control interface layer. Secure bidirectional data out streamed live via secure
communication protocols at <500ms latency for control decisions.

3.7.2. Performance Metrics and Evaluation Criteria

The evaluation framework employs multiple key performance indicators quantifying energy
efficiency, carbon reduction, and operational effectiveness. Primary metrics include:

Energy Performance Metrics:
(EUIbaseline' EUlyp)

EUlpgseline
(PDbaseline' PDAI)

® Energy Use Intensity reduction: AEUI = x 100%

® Peak demand reduction: APD = oD x 100%
baseline
. E(IVEF(I e
® Load factor improvement: LF = E—g
peak
Carbon Footprint Metrics:
. . . . COﬁmissions
® (Carbon emission intensity: CEl =——== (kg COz/mz/year)
‘floor
. CE aseline” CE
® Carbon reduction rate: CRR = (”CE’—A’) x 100%
baseline
Economic Performance Metrics:
. . _ (Ecbaseline' ECAI) 0
® Energy cost savings: ECS =—————=x 100%

ECpaseline
ﬂlnnualsavings- Annualwmj

Initialipyestment

® Return on investment: ROI =

Comfort and Reliability Metrics:

rs

ours;j,
® Thermal comfort compliance: TCC = /M)x 100%
Totalpoyrs

perationalygy,-

® System availability: SA = 5) x 100%

Totalpoyrs

3.8. Statistical Analysis Framework

Statistical validation employs Analysis of Variance (ANOVA) to determine significance of
performance improvements across building types and operational conditions. The statistical
model is formulated as:

Yig=u + ot ﬂfr (@)t ek
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Where Y represents the performance metric, p is the overall mean, o_i is the building type
effect, /3] is the Al system effect, (aff);; represents interaction effects, and ¢ is the random error
term.

Confidence intervals for performance improvements are calculated using:

Cl=x% t%,dﬁ( /11/_”)

Where X is the sample mean, t« dfis the critical t-value, s is the sample standard deviation, and
7

n is the sample size. Statistical significance is determined at p < 0.05 with effect sizes calculated
using Cohen's d for practical significance assessment.

The approach provides reproducibility through standardized protocols, automated data
acquisition procedures and full documentation of all experimental settings and conditions.
Quality control activities involve sensor calibration check, data validation and standard system
performance check to ensure accuracy of measurements during drought experiments.

4. Analysis and Discussion

The 18-month experimental campaign in 27 case study buildings reveals that Al-integrated
Building Energy Management Systems yield large improvements to energy efficiency, carbon
reduction and operational performance. Results are reported among four main groups which
are statistically verified for significant augmentation in all criteria.

4.1. Energy Performance Results

AI-BEMS integration achieved substantial energy consumption reductions across all building
categories. Figure 1 presents the energy consumption comparison and Energy Use Intensity
(EUI) reduction by building type. Residential buildings demonstrated the highest improvement
at 31.3% EUI reduction (145.2 to 99.8 kWh/m? /year), followed by institutional facilities at 27.8%
(152.3 to 109.9 kWh/m?/year), and commercial buildings at 26.1% (168.7 to 124.6
kWh/m?/year).

Energy Consumption Comparison by Building Type Energy Use Intensity Reduction by Building Type

168.7 mmm Baseline BEMS
mmm A-Integrated BEMS

31.3%

1523

Energy Use Intensity (kWhim#/year)
Energy Reduction (%)

0

Residential Commercial Institutional Commercial Institutional

Building Type Building Type

Figure 1. Energy Performance Comparison by Building Type
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Monthly Energy Consumption Comparison

180

Energy Consumption (kWh/m#/month)
=
5

100 —e~ Baseline BEMS
~@- Al-Integrated BEMS

Jan Feb Mar Apr May Jun Jul
- Monthly Energy Reduction Percentage

Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

Figure 2. Seasonal Energy Performance Analysis

Sep Oct Nov Dec

Energy Reduction (%)
3 & B8 ¥

o

o

Jan Feb

Figure 2 illustrates the seasonal performance analysis through monthly energy consumption
comparison and reduction percentages. Winter months demonstrated 25% average energy
reduction, spring achieved peak performance at 29-30%, summer maintained 27% reduction,
and fall showed variable performance ranging from 27-31%. The Al system maintained
consistent energy savings throughout the year, with baseline systems ranging from 128.7-185.3
kWh/m?/month compared to Al-integrated systems at 90.4-139.2 kWh/m?/month.

Key findings include Overall average energy reduction is 28.3%. Seasonal variation
demonstrates Al adaptability to weather patterns, Consistent performance across diverse

operational contexts and Spring months show optimal Al system performance due to moderate
weather conditions

4.2. Carbon Emission Reduction Analysis

Carbon Emission Comparison by Building Type Carbon Emission Red

by Building Type

100 “
B Buscline BEMS
B Al-Tntegrated BTMS

34.8%

"
b3

32.1%

8

b

Carbon Reduction (%)
e
o B

3

»

Carbon Emission Intensity (kg CO2/m?*/year)

Residential Commercial Tnstitutional
Building Type
Monthly Carbon Emission Comparison

=—o— Baseline BEMS
~—@— Al-Integrated BEMS

Residential Commercial Tnstitutional
Building Type
C lative Carbon Emissi

354 P9 Cumulative Carbon Savings

Carbon Emissions (kg CO2/m*month)

Cumulative Carbon Savings (kg CO»/m?)
" o

Jan Feb  Mar  Apr May Jun  Jul  Aug  Sep  Oct  Nov  Dec

Jan  Feb  Mar  Apr  May Jun  Jul Aug  Sep Ot Nov  Dec
Month

Month

Figure 3. Carbon Emission Reduction Analysis

Figure 3 demonstrates carbon emission reduction achievements across building types through
four comprehensive analyses. Carbon emission reductions strongly correlated with energy
improvements, achieving substantial decreases across all categories. Institutional buildings
achieved the highest carbon reduction at 34.8% (98.0 to 56.5 kg CO,/m?/year), followed by
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residential buildings at 32.1% (89.0 to 60.4 kg CO,/m?/year), and commercial buildings at 30.4%
(96.2 to 67.0 kg CO,/m?/year).

Monthly carbon emission comparison shows consistent performance throughout the year, with
cumulative carbon savings reaching 37.2 kg CO,/m?/year by December. Winter months
showed highest absolute emissions (11.2 kg CO,/m?/month baseline vs. 7.6 kg CO,/m?/month
Al-integrated), while summer months demonstrated more moderate levels (8.8 vs. 6.0 kg
C0,/m?/month respectively).

Key findings include;

® Overall average carbon reduction: 32.1%

® Strong correlation between energy and carbon reduction (r = 0.967)

® [nstitutional buildings benefit most from extended operating hours

® Progressive cumulative savings validate long-term environmental impact

4.3. Economic Performance Analysis

Figure 4 presents comprehensive economic analysis including annual savings, payback periods,
ROI calculations, and cost-benefit analysis. Annual energy cost savings varied by building type
and size, with large commercial buildings achieving highest savings at $20.4/m?, followed by
medium commercial at $18.9/m? and small commercial at $16.8/m?. Residential buildings
showed consistent savings from $11.2-$13.4/m?, while institutional buildings achieved $12.9-

$15.0/m?.

Annual Energy Cost Savings by Building Category Investment Payback Period by Building Category
S04

e e Sl R I s ==+ 5-Year Threshold

IS

Annual Energy Cost Savings ($/m?)
Payback Period (Years)

Building Category Building Category
5-Year Return on Investment by Building Category Cost-Benefit Analysis Over Time

““““““““““““““““““““““ — == 100% ROL 1501 —e— Cumulative Savings |

~—#— Initial Investment

= Net Benelit /

3
3

5-Year ROI (%)
Cost/Savings ($/m?)

Q@

Building Category

Figure 4. Economic Performance Analysis

Payback period analysis reveals favorable economic outcomes with all periods below the 5-
year threshold. Commercial buildings demonstrated shortest payback at 3.1 years average,
while residential and institutional buildings both achieved 3.4 years. The 5-year ROI analysis
shows commercial buildings achieving 61-64%, residential buildings 45-52%, and institutional

buildings 44-50%. Key findings includes,

® Average payback period: 3.3 years across all building types

® Commercial buildings achieve shortest payback due to higher baseline costs
® Strong correlation between investment and savings (R? = 0.976)

® 10-year cost-benefit analysis shows net benefits exceeding $100/m?
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4.4. System Reliability and Performance Metrics

Figure 5 demonstrates exceptional operational stability through four key performance
indicators over the 18-month period. System availability progressively improved from 95.2%
in month 1 to 99.2% by month 18, averaging 98.2%. Thermal comfort compliance increased
from 89.2% to 95.6%, averaging 93.8% while maintaining energy efficiency improvements.

Al prediction accuracy learning curve reveals three distinct phases: learning phase (months 1-
6) showing rapid improvement from 78.0% to 90.5%, optimization phase (months 6-12)
reaching 94.5%, and stable operation phase (months 12-18) maintaining 95.0% accuracy.
Energy savings consistency improved from 18.0% initial savings to 29.8% by month 18,
averaging 27.4%.

Key findings includes,

® System availability: 98.2% average, exceeding industry standards

Thermal comfort maintained while achieving energy savings

Al learning demonstrates continuous performance improvement

Progressive optimization validates adaptive capabilities
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Figure 5. System Reliability and Performance Metrics

4.5. Comprehensive Performance Evaluation

Figure 6 provides performance targets versus achieved results and overall performance profile
analysis. The AI-BEMS implementation exceeded expectations across all key performance
indicators: energy reduction achieved 28.3% vs. 25.0% target (+13.2% overperformance),
carbon reduction 32.1% vs. 30.0% target (+7.0%), cost savings 29.7% vs. 25.0% target
(+18.8%), system availability 98.7% vs. 95.0% target (+3.9%), comfort compliance 94.3% vs.
90.0% target (+4.8%), and prediction accuracy 94.6% vs. 90.0% target (+5.1%).

The radar chart demonstrates balanced achievement across all performance dimensions, with
achieved performance consistently exceeding target performance. This validates the multi-
objective optimization approach and demonstrates simultaneous improvements across
competing objectives. Key findings includes;

® All performance targets exceeded by significant margins

® Balanced performance profile across all metrics

® Multi-objective optimization successfully implemented

([

No significant trade-offs between competing objectives
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Figure 6. Comprehensive Performance Evaluation

4.6. Detailed Performance Analysis by Building Category

Figure 7 presents detailed performance analysis through heatmap visualization, building size
comparison, investment-savings relationship, and payback period analysis. The performance
heatmap reveals consistent high performance across all building categories, with energy
reduction ranging from 24.1% to 32.6%, carbon reduction from 28.9% to 36.1%, and cost

savings from 26.9% to 33.8%.

Performance Ieatmap by Building Category
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Figure 7. Detailed Performance Analysis by Building Category

Energy reduction by building size shows economies of scale, with large buildings averaging 31.1%
reduction compared to 28.5% for small buildings. The investment-savings relationship
demonstrates strong positive correlation (R? = 0.976), validating economic scalability. Average
payback periods show commercial buildings at 3.1 years, residential at 3.4 years, and
institutional at 3.4 years, all well below the 4-year threshold. Key findings include;

® C(Consistent performance across all building types and sizes

® Larger buildings achieve greater energy reductions (economies of scale)

® Strong economic scalability validated
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® All building categories demonstrate favorable economic returns

5. Conclusion

The successful findings generated from this extensive work can provide firm evidence that the
Al technology combined with BEMS is a transformative approach toward delivering significant
advances in the urban building energy performance enhancement and low carbon targets. The
18 months of field-based experimental research on 27 different cases shows strong empirical
evidence that AI-BEMSS integrations can increase the economic performance and viability of
building performance and lead to significant measurable, sustained beneficial building
performance in diverse areas of performance while maintaining reliability and operability.

Objectives - Primary: To date the main research objectives have been met as substantial energy
reductions have been achieved in Al-integrated systems: Infrastructure integrated Al systems
has resulted in average energy use savings of 28.3% in the different types of buildings, well over
the proposed baseline 25% reduction. Residential sector saved the most energy by 31.3%,
followed by institutional (27.8%) and commercial (26.1%) buildings. These findings support
the hypothesis that Al algorithms can better control complex building energy systems when
compared to traditional approaches by adapting to seasonal and occupancy trends and
operational constraints without sacrificing year-round performance.

A 32.1% reduction in overall carbon emissions is an additional demonstration effect of
environmental paybacks of AI-BEMS integration in the categories of all building. The high
correlation between the improving degree of building energy efficiency and the carbon
emission reductions (r = 0.967) states that building energy optimization can also bring direct
contribution to the city carbon emission reduction. The greatest carbon savings potential was
from institutional buildings at 34.8% due to the longer hours that these buildings operate and
more centralized systems allowing higher level control strategies to be deployed using Al.

The economic study confirms the economical potential of the AI-BEMS technology, as the
investment return is in general positive regardless the type and size of the building. The median
payback time of 3.3 years is well within the range deemed acceptable for building energy
investments, and 5-yr average ROI of 53% is significantly higher than typical expectations on
traditional building efficiency projects. The high correlation (R* = 0.976) between initial
investment and annual savings emphasizes the scalability of such economic benefits and
underpins more expansive deployment of the urban sustainability schemes.

System reliability and performance indices confirm that AI-BEMS technology is mature and
strong enough for practical realization. At 98.2%, the average system availability is better than
accepted industry norms for building management systems and the average thermal comfort
compliance of 93.8% demonstrates the technology’s capability to balance a range of competing
objectives. The Al prediction accuracy learning curve from 78.0% and 95.0% over operations
demonstrates the learning capability for continuously improving performance with accruing
experience and data.

The findings of this research also have implications beyond the performance of the individual
building, in terms of urban sustainability. The strong consistent evidence of AI-BEMS effect can
offer confidence for the large scale deployment in the urban area where the buildings are
diverse in size and building operation style. The technology’s compatibility with existing
building equipment, including legacy systems, reduces the barrier to entry of implementation
and enables retrofit applications crucial to improving the stock of existing urban buildings.
Further research should pay attention to sub-district-level collaborative scheduling strategies
based on the AI-BEMS for community energy optimization and grid integration. Researching
advanced machine learning techniques, such as federated learning methods for preserving data
privacy and supporting collaborative optimization, is a promising direction toward improving
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progress. Further longitudinal studies beyond 18-month time frame would also be useful to
inform long-term durability of the system and continued benefits in performance.

The policy conclusion of this study encourages governments to consider AI-BEMS adoption as
a primary strategy to meet carbon neutrality goals, and building codes, incentive programs and
urban plans to develop or promote AI-BEMS immensely. The proven economics and technical
performance support a framework of regulatory requirements and industry practices that may
accelerate the introduction of technology while maintaining quality and performance.

In Conclusion, Al driven BEMS are a proven and scalable technology solution for delivering low-
carbon urban development goals. The significant strides in energy-efficiency, carbon reduction,
cost-effectiveness and operational reliability realized in a wide range of buildings demonstrate
the technology’s readiness for deployment. The integration of Al with BEMS by cities across the
world aiming for aggressive decarbonization targets is a practical, affordable approach to
transition from urban buildings passive energy consumers to contributors towards a
sustainable urban energy ecosystem.
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